Experimental and numerical investigations of natural convection phenomena in a fermentation tank
Abstract
In the context of investigations of real multiphase flows, the university has its own 350 litre fermentation tank with comprehensive acoustic flow and temperature measurement technology for the systematically investigation, of the influence of the fermentation activity, distribution of yeast and occurring convection phenomena. Due to the many problems with the optical (e.g. PIV) and acoustic (e.g. UDV) measurement in a real fermenting fluid the numerical simulation was already used in earlier publications. To validate the numerical models, extensive experimental investigations were carried out which show that the flow in the fermenter is caused only by the reaction products of the yeast and the cooling panels and controls the yeast distribution. In this paper, both the numerical (CFD) and the experimental investigations serve as a starting point to influence the yeast distribution. The described convection flow can only temporarily guarantee the uniform distribution of the yeast in the fermenter until the sedimentation of the yeast at the tank bottom (bottom-fermenting yeast) finally begins.
Downloads
Copyright (c) 2019 Daniel Klembt, Heiko Meironke
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain full copyright to their individual works.
The Journal of Mechanical and Energy Engineering (JMEE) publishes fully open access articles.
Open Access benefits:
- High visibility – all articles are made freely available online for everyone worldwide, immediately upon publication.
- Increased visibility and readership.
- Rapid publication.
- All articles are CC BY licensed. The final article can be reused and immediately deposited in any repository.
- Authors retain the copyright to their work.
By publishing with us, you retain the copyright of your work under the terms of a Creative Commons Attribution 4.0 International (CC BY) license.
The CC BY license permits unrestricted use, distribution and reproduction in any medium, provided appropriate credit is given to the original author(s) and the source, a link to the Creative Commons license is included, and it is indicated if any changes were made. This means that you can deposit the final version of your work in any digital repository immediately after publication.
We are committed to providing high-level peer review, author and production services, so you can trust in the quality and reliability of the work that we publish.