Parametric study of electrochemical discharge drilling on ceramic material using Taguchi method
Abstract
The Electrochemical Discharge Machining (ECDM) is a hybrid machining technology which combined with electro discharge machining and electro chemical machining process. In this research, electrochemical discharge drilling operation is carried out on conventional ceramic tile by using a designed and manufactured ECDM setup. The experiments were performed as per design of experimental technique of Taguchi L27 orthogonal array using MINITAB 17 software. The important process parameters that have been selected are voltage, rotation and electrolyte concentration with output response as machining depth and diametric cut. From the observations, it is found that the voltage is the most significant parameter for machining depth and diametric cut followed by electrolyte concentration and rotation.
Downloads
Copyright (c) 2018 Pravin Pawar, Amaresh Kumar, Raj Ballav
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain full copyright to their individual works.
The Journal of Mechanical and Energy Engineering (JMEE) publishes fully open access articles.
Open Access benefits:
- High visibility – all articles are made freely available online for everyone worldwide, immediately upon publication.
- Increased visibility and readership.
- Rapid publication.
- All articles are CC BY licensed. The final article can be reused and immediately deposited in any repository.
- Authors retain the copyright to their work.
By publishing with us, you retain the copyright of your work under the terms of a Creative Commons Attribution 4.0 International (CC BY) license.
The CC BY license permits unrestricted use, distribution and reproduction in any medium, provided appropriate credit is given to the original author(s) and the source, a link to the Creative Commons license is included, and it is indicated if any changes were made. This means that you can deposit the final version of your work in any digital repository immediately after publication.
We are committed to providing high-level peer review, author and production services, so you can trust in the quality and reliability of the work that we publish.