Investigation of non-imaging Fresnel lens prototyping with different manufacturing methods for solar energy application
Abstract
Non-imaging Fresnel lenses have been playing an important role in improving the efficiency of the solar energy systems. Many researchers have been developing novel designs of Fresnel lenses to enhance the concentrator performance. To bring the complex design of a Fresnel lens from a conceptual theory to a real-life application while maintaining its efficiency, it is critical to find the optimum manufacturing method that achieves the best quality fabrication at low cost in the lab scale. This work will systematically investigate four advanced manufacturing methods for their lens-making capabilities, including pressure casting, hot embossing, 3D printing, and CNC machining. Six Fresnel lenses were fabricated by the four methods, which were tested in the lab by a solar simulator and a solar cell to demonstrate their performances. The CNC machining provides the best quality lab-scale Fresnel lens that enhances the solar cell efficiency by 118.3%. 3D printing and hot embossing methods are also promising for the fabrication of good performance lenses – increasing the solar cell efficiency by 40-70%. However, the 3D printed lens has the issue of material degradation on the long term. Although the pressure casting is the easiest manufacturing method, the performance of fabricated lens was the lowest.
Downloads
Copyright (c) 2021 Ai Jiang Sexton, Hassan Qandil, Mohammad Abdallah, Weihuan Zhao
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain full copyright to their individual works.
The Journal of Mechanical and Energy Engineering (JMEE) publishes fully open access articles.
Open Access benefits:
- High visibility – all articles are made freely available online for everyone worldwide, immediately upon publication.
- Increased visibility and readership.
- Rapid publication.
- All articles are CC BY licensed. The final article can be reused and immediately deposited in any repository.
- Authors retain the copyright to their work.
By publishing with us, you retain the copyright of your work under the terms of a Creative Commons Attribution 4.0 International (CC BY) license.
The CC BY license permits unrestricted use, distribution and reproduction in any medium, provided appropriate credit is given to the original author(s) and the source, a link to the Creative Commons license is included, and it is indicated if any changes were made. This means that you can deposit the final version of your work in any digital repository immediately after publication.
We are committed to providing high-level peer review, author and production services, so you can trust in the quality and reliability of the work that we publish.