Non traditional cooling technique using Peltier effect for single point boron carbide (B4C) cutting tool doping with titanium carbide (TiC)
Abstract
A single point cutting tool is modeled out of two different materials having desired thermoelectric properties. The tool material used is B4C doped with different compositions of Titanium Carbide. In the present work, three different compositions of B4C doped on both sides of cutting tool made by tungsten carbide. The range of composition of boron carbide (B4C) was selected randomly with 0-12.5%, 0-25.4% and 12.5 – 25.4% of B4C on first half and second half of the cutting tool respectively. The simulation process is done in ANSYS 2020 R2 software, thermal-electric module (TEM) is used. From these studies it is evident that considerable cooling effect is achieved and found to be the lowest temperature of 14.960C is observed for 0-25.4% B4C, 18.790C is observed for 0- 12.5%B4C and 26.730C for 12.5-25.4% B4C at the junction of the materials which is nearer to the cutting tip respectively. Finally it is concluded that one side of cutting tool without any doping and other side with 25.4% B4C doped showed good results which observed by conducting number of simulations at different levels of iterations for B4C doped titanium carbide cutting tool used in turning operation.
Downloads
Copyright (c) 2021 Reddy Sreenivasulu, Krishna V. Teja, Gnaneswara O.V. Reddy, Y. Shivaram, Mohana Y. Ayyappa, S.S.V. Kartheek, Samuel J.J. Isaac
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain full copyright to their individual works.
The Journal of Mechanical and Energy Engineering (JMEE) publishes fully open access articles.
Open Access benefits:
- High visibility – all articles are made freely available online for everyone worldwide, immediately upon publication.
- Increased visibility and readership.
- Rapid publication.
- All articles are CC BY licensed. The final article can be reused and immediately deposited in any repository.
- Authors retain the copyright to their work.
By publishing with us, you retain the copyright of your work under the terms of a Creative Commons Attribution 4.0 International (CC BY) license.
The CC BY license permits unrestricted use, distribution and reproduction in any medium, provided appropriate credit is given to the original author(s) and the source, a link to the Creative Commons license is included, and it is indicated if any changes were made. This means that you can deposit the final version of your work in any digital repository immediately after publication.
We are committed to providing high-level peer review, author and production services, so you can trust in the quality and reliability of the work that we publish.