Visualization of flow past square cylinders with corner modification
Abstract
This article presents the results for flow past a square cylinder and two square cylinders of the same and different sizes with corner modifications by varying the spacing ratio. Here, experimental work is conducted in a recirculatory channel filled with water. A set of aluminum discs made to rotate to create the flow in the test section. The motor is used to vary the speed of the water. Fine aluminum powder is used as a tracer medium. It is observed that vortex shedding frequency decreases by placing the second cylinder in the downstream of the first cylinder. For similar size cylinders, the width of the eddy in the middle of the cylinders increases with an increase in spacing ratio. With the increase of spacing ratio to 6, the flow past each cylinder behaves like a single square cylinder. If the upstream square cylinder size is smaller than the downstream square cylinder, the eddy size is reduced in between the cylinder compared to the downstream of the second cylinder. If the upstream square cylinder size is bigger than the downstream square cylinder, the eddy size is larger in between the cylinder compared to the downstream of the second cylinder.
Downloads
Copyright (c) 2020 Ch. Krishnappa Vikram, H. V. Ravindra, Y. T. Krishnegowda
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain full copyright to their individual works.
The Journal of Mechanical and Energy Engineering (JMEE) publishes fully open access articles.
Open Access benefits:
- High visibility – all articles are made freely available online for everyone worldwide, immediately upon publication.
- Increased visibility and readership.
- Rapid publication.
- All articles are CC BY licensed. The final article can be reused and immediately deposited in any repository.
- Authors retain the copyright to their work.
By publishing with us, you retain the copyright of your work under the terms of a Creative Commons Attribution 4.0 International (CC BY) license.
The CC BY license permits unrestricted use, distribution and reproduction in any medium, provided appropriate credit is given to the original author(s) and the source, a link to the Creative Commons license is included, and it is indicated if any changes were made. This means that you can deposit the final version of your work in any digital repository immediately after publication.
We are committed to providing high-level peer review, author and production services, so you can trust in the quality and reliability of the work that we publish.