Ballistic studies of lightweight materials – A Review
Abstract
A recent development in the material studies provides beneficial application of lightweight alloys such as aluminium, magnesium as well as composites and metal matrices. The alloys are experimentally improved by increasing hardness in the ballistics testing using projectiles, makes them viable for the areas such as aerospace, military, defence, automobiles and so on. So the study is made on different approaches. First, by comparing different types of non-ferrous alloys and projectiles regarding sizes, structures. Second, the materials with heat treatment are also studied for investigating the hardness property by overcoming successful penetration on non-ferrous alloys. Third, material to be improvised by use of numerical studies such as 3D models, empirical models and software such as ANSYS, ABAQUS and AUTODYN, etc. Finally, the aim of this paper is to review the recent progress ballistic studies of lightweight materials and to provide a best choice of material for further on-going research.
Downloads
Copyright (c) 2020 S. Balaji, S. Dharani Kumar, M. Mohamed Javeed, K. Chandra Moorthy, D. Dharanidharan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain full copyright to their individual works.
The Journal of Mechanical and Energy Engineering (JMEE) publishes fully open access articles.
Open Access benefits:
- High visibility – all articles are made freely available online for everyone worldwide, immediately upon publication.
- Increased visibility and readership.
- Rapid publication.
- All articles are CC BY licensed. The final article can be reused and immediately deposited in any repository.
- Authors retain the copyright to their work.
By publishing with us, you retain the copyright of your work under the terms of a Creative Commons Attribution 4.0 International (CC BY) license.
The CC BY license permits unrestricted use, distribution and reproduction in any medium, provided appropriate credit is given to the original author(s) and the source, a link to the Creative Commons license is included, and it is indicated if any changes were made. This means that you can deposit the final version of your work in any digital repository immediately after publication.
We are committed to providing high-level peer review, author and production services, so you can trust in the quality and reliability of the work that we publish.