Impact of addition oxy-hydrogen gas (HHO) on vehicle engines performance and emissions
Abstract
The electrolysis process of water produces oxy-hydrogen (HHO) gas that can be used as an energy source to solve the shortage problem of fossil fuel and reduces the exhaust emissions of greenhouse gases from vehicles engines. In this study, HHO dry cell generator was designed, fabricated and tested experimentally to investigate its performance. The hybrid internal combustion engines using HHO gas is considered one of the most important studied applications. The vehicle engines performance and gas emissions are investigated for two different engines; 150CC with carburetor and 1300CC with Electronic Control Unit (ECU). The results recorded the consumption of the fuel is reduced by 14.8% for 150CC engine and 16.3% for 1300CC engine. HHO gas reduced the emission gases by 33% and 24.5% reduction in CO and 27.4% and 21% reduction in HC for 150CC and 1300CC engines respectively. HHO gas can be efficient used as a secondary fuel for vehicle engines.
Downloads
Copyright (c) 2019 Tamer Nabil, Mohamed Khairat Dawood
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain full copyright to their individual works.
The Journal of Mechanical and Energy Engineering (JMEE) publishes fully open access articles.
Open Access benefits:
- High visibility – all articles are made freely available online for everyone worldwide, immediately upon publication.
- Increased visibility and readership.
- Rapid publication.
- All articles are CC BY licensed. The final article can be reused and immediately deposited in any repository.
- Authors retain the copyright to their work.
By publishing with us, you retain the copyright of your work under the terms of a Creative Commons Attribution 4.0 International (CC BY) license.
The CC BY license permits unrestricted use, distribution and reproduction in any medium, provided appropriate credit is given to the original author(s) and the source, a link to the Creative Commons license is included, and it is indicated if any changes were made. This means that you can deposit the final version of your work in any digital repository immediately after publication.
We are committed to providing high-level peer review, author and production services, so you can trust in the quality and reliability of the work that we publish.