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Abstract: In this paper, a multilayer feedforward neural network (MLFFNN) is proposed for 

solving the problem of the forward and inverse kinematics of a robotic manipulator. For the forward 

kinematics solution, two cases are presented. The first case is that one MLFFNN is designed and 

trained to find solely the position of the robot end-effector. In the second case, another MLFFNN 

is designed and trained to find both the position and the orientation of the robot end-effector. Both 

MLFFNNs are designed considering the joints’ positions as the inputs. For the inverse kinematics 

solution, a MLFFNN is designed and trained to find the joints’ positions considering the position 

and the orientation of the robot end-effector as the inputs. For training any of the proposed 

MLFFNNs, data is generated in MATLAB using two different cases. The first case is that data is 

generated assuming an incremental motion of the robot’s joints, whereas the second case is that 

data is obtained with a real robot considering a sinusoidal joint motion. The MLFFNN training is 

executed using the Levenberg-Marquardt algorithm. This method is designed to be used and 

generalized to any DOF manipulator, particularly more complex robots such as 6-DOF and 7-DOF 

robots. However, for simplicity, this is applied in this paper using a 2-DOF planar robot. The results 

show that the approximation error between the desired output and the estimated one by the 

MLFFNN is very low and it is approximately equal to zero. In other words, the MLFFNN is 

efficient enough to solve the problem of the forward and inverse kinematics, regardless of the joint 

motion type. 

Keywords: multilayer feedforward neural network, forward kinematics, inverse kinematics, 

2-DOF planar robot, Levenberg-Marquardt algorithm, generated data.  

1. INTRODUCTION 

Forward kinematics [1–3] refers to determining the 

position and the orientation of the robot end-effector 

(Cartesian space) based on the joints’ variables. The 

forward kinematics problem is always straightforward. 

In addition, deriving the equation is easy and no 

complexity is found. Inverse kinematics refers to 

determining the joints’ variables based on a given 

position and orientation for the robot end-effector. 

A solution to the problem of inverse kinematics is 

complex and difficult. In addition, it is computationally 

expensive. Forward kinematics vs. inverse kinematics 

is presented in Fig. 1. 

 

Fig. 1. The relationship between forward and inverse 

kinematics, [1]. The left side of the figure represents the 

joint variable of the manipulator. The right side 
represents the position and orientation of the robot end-

effector. 
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Different methods have been proposed for solving 

the forward kinematics problem of the manipulator 

such as Denavit–Hartenberg (DH), the product of 

exponential, trigonometric, dual-quaternion, support 

vector regression, and neural networks (NNs). In [4], 

Denavit and Hartenberg demonstrated that four 

parameters were required for the general transformation 

between two joints. These four parameters were known 

as DH parameters. In addition, these parameters 

became a standard to describe robot kinematics. The 

DH method is the most consistent and the most concise 

method of all. However, it has some limitations [5]. In 

[6], Farah and LIU presented forward kinematics using 

DH parameters for a 6-DOF surgical robot. The product 

of exponential [7] and unit dual quaternions [8] were 

based on the screw theory, and they were proposed in 

robot kinematics. In [9], Sharkawy and Aspragathos 

presented a comparative study between the product of 

exponentials formula and the unit dual quaternion 

algebra for determining the forward kinematics of 

a serial manipulator (i.e. the 7-DOF KUKA LWR 

robot). The results showed that the unit dual 

quaternions are characterised by higher compactness, 

and it facilitates the understanding of the joint axes 

geometrical meaning compared to the product of 

exponential method. The geometric method [10] was 

also proposed to obtain forward kinematics. This 

method uses the geometric properties of specific 

mechanisms for transforming and reducing the 

problem. After that, analytical geometric means are 

used to obtain the solutions. An example of this method 

was presented in [10], where it was used to find the 

closed-form forward kinematics of an H4 parallel robot. 

Support vector regression [11] is a supervised machine 

learning technique and it is widely used for 

classification and regression tasks. NN has the 

properties that it can approximate any function and its 

ability of generalization under different conditions [12], 

[13]. Support vector regression was used to develop 

forward kinematics for parallel manipulator robots and the 

NN method was used with cable-driven robots [14–17]. 

A solution of the inverse kinematics problem of the 

manipulator as stated in the beginning of this section is 

a difficult and quite challenging task [3]. Different 

methods were proposed for solving the inverse 

kinematics problem such as the closed-form solution 

method, numerical methods, evolutionary computing, 

and NNs. The closed-form solution method depends on 

an analytic expression or any polynomial having a DOF 

less than four [2]. This solution takes the advantage of 

the robot’s specific geometry for formulating the 

mathematical model. This method is divided into types, 

algebraic and geometric methods. Examples of 

closed-form solution methods were presented in these 

references [18–19]. Numerical methods were used to 

solve the inverse kinematic problem when the obtained 

polynomial in the closed-form solution with more than 

four DOF; therefore, the robot did not have a close-form 

solution, [20]. Numerical methods are classified into 

the following types [2]: the symbolic elimination 

method, continuation methods, Iterative Methods, and 

methods based on optimization techniques. Examples 

of using the numerical methods to solve the inverse 

kinematics problem were presented in [21–22]. The 

numerical methods lack accuracy when compared with 

closed-form methods, [2]. Evolutionary computing was 

also proposed for solving the inverse kinematics 

problem as in [23–24]. NNs were presented for the 

inverse kinematic solution. In [25], Tejomurtula and 

Kak proposed structured neural networks to solve 

inverse kinematics. They used conventional 

backpropagation learning for the training process which 

led to several difficulties related to accuracy. To 

overcome the problems of accuracy and training time, 

they devised a variant of the conventional error 

backpropagation learning. NNs based methods were 

also proposed in references [3, 26–27]. 

From this discussion, we can conclude that further 

investigation using soft computing-based methods such 

as NNs for the forward and particularly inverse 

kinematics solution is required. The main issue with the 

previous researchers was a low accuracy of NN. 

Therefore, improving the NN performance by 

achieving a very small (close to zero) mean squared 

error (MSE) and an approximation error and optimizing 

the NN architecture should be considered and 

performed. 

The main contribution and aim of this paper cover 

the following three issues: 

1) The first issue is developing a MLFFNN that can 

be generalized and used for solving the problem of 

forward kinematics and inverse kinematics of any 

DOF manipulator, particularly for complex robots 

that have 6-DOF and 7-DOF. For simplicity, the 

method is applied with a 2-DOF planar 

manipulator in this paper. In addition, the 2-DOF 

robot is often used in robotics as testbeds for 

various algorithms and theories. A similar 

example of this issue is presented in our previous 

works in [28]–[32], where we implemented 

a collision detection method for human-robot 

collaboration. The method in these references was 

applied and investigated with 1-DOF and 2-DOF 

and 3-DOF robots as simple cases to minimize the 

calculations and the human effort. Although the 

method was applied with these simple cases, we 

concluded that it can be applied with any complex 

robot such as 6- or 7- DOF as the same 

methodology can be followed with these complex 

robots.  

2) The second issue is seeking to obtain the best 

performance of the designed MLFFNN by 

achieving MSE and an approximation error that 
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are close to zero . In other words, this means high 

accuracy.  

3) The third issue is executing a new methodology in 

the case of forward kinematics to investigate the 

approximation error between the desired and the 

estimated outputs. This methodology considers 

two cases: 

− The first case is designing and training a MLFFNN 

for estimating the robot end-effector position only.  

− The second case is designing and training another 

MLFFNN for estimating both the robot end-

effector position and orientation. 

The main purpose of this methodology is to 

demonstrate whether implementing a MLFFNN to 

predict only the position of the robot end-effector and 

another MLFFNN to predict only the orientation of the 

robot end-effector is better or a MLFFNN to predict 

both the position and the orientation of the robot end-

effector simultaneously.  

For the inverse kinematics solution, a MLFFNN is 

designed and trained to estimate the joints’ positions 

based on both the position and the orientation of the 

robot end-effector.  

The Levenberg-Marquardt algorithm is used to 

train any of the proposed MLFFNNs. The training is 

executed using two types of data: the first data is 

generated considering the incremental joint’s motion, 

whereas the second data is obtained with a real robot 

(i.e., a KUKA LWR robot) considering the sinusoidal 

joint’s motion. The simulation work is presented in 

detail together with the trained MLFFNN verification. 

All this work is executed in MATLAB and using an 

Intel®Core™ i5-8250U CPU @ 1.60 GHz processor. 

The rest of the paper is divided as follows. Section 

2 presents the equations of the forward and the inverse 

kinematics of the 2-DOF planar robot using the 

geometric solution approach. In Section 3, the collected 

data which is used for training and testing the MLFFNN 

is discussed. In Section 4, the design, training, and 

verification of the MLFFNN for the forward kinematics 

solution are presented in detail. Two cases are shown 

clearly in this section. Section 5 shows the inverse 

kinematics solution based on the proposed MLFFNN. 

The design, training, verification of this MLFFNN are 

discussed in detail. Finally, Section 6 summarizes the 

main points of this paper, and it offers some future 

works. 

2. FORWARD AND INVERSE 

KINEMATICS OF 2-DOF ROBOT 

In this section, the forward and the inverse 

kinematics analysis of the SCARA type robot (2-DoF 

for planar horizontal motions) are presented. The 

2-DOF planar robot is often used in robotics as a testbed 

for various algorithms and theories, [3, 33]. This robot 

is shown in Fig. 2. 

 

Fig. 2. A 2-DOF planar robot. 

2.1. Forward Kinematics 

Using the geometric solution approach, the forward 

kinematics equations of the 2-DOF planar robot are as 

follows [1], [9], [34]: 

 𝑥𝐸 = 𝐿1 cos 𝜃1 + 𝐿2 cos(𝜃1 + 𝜃2), (1) 

 𝑦𝐸 = 𝐿1 sin 𝜃1 + 𝐿2 sin(𝜃1 + 𝜃2). (2) 

Equations (1) and (2) present the coordinates 

(position) of the robot end-effecter in the frame 

attached to the base of the robot O (𝑥0, 𝑦0). The 

orientation of the robot end-effecter is described by the 

angle of rotation of the frame attached to the end-

effecter relative to the fixed frame attached to the base 

of the robot. The orientation of the end-effecter 𝜃𝐸 is 

related to the actual joint displacements as follows: 

 𝜃𝐸 = 𝜃1 + 𝜃2. (3) 

Therefore, equations (1) to (3) present the end-

effector position and orientation viewed from the fixed 

coordinate system attached to the base of the robot in 

relation to the joint variables 𝜃1 and 𝜃2, [35]. 

2.2. Inverse Kinematics 

Using the geometric solution approach, inverse 

kinematics (𝜃1, 𝜃2) are presented as follows [1], [36]: 

 𝜃2 = 𝑎𝑟𝑐𝑡𝑎𝑛2(± sin 𝜃2 , cos 𝜃2), (4) 

where: cos 𝜃2 =
𝑥𝐸

2+𝑦𝐸
2−𝐿1

2−𝐿2
2

2𝐿1𝐿2
 and sin 𝜃2 =

±√1 − (
𝑥𝐸

2+𝑦𝐸
2−𝐿1

2−𝐿2
2

2𝐿1𝐿2
)

2

. 

 𝜃1 = 𝑎𝑟𝑐𝑡𝑎𝑛2(± sin 𝜃1 , cos 𝜃1), (5) 

where: cos 𝜃1 =
𝑥𝐸(𝐿1+𝐿2 𝑐𝑜𝑠 𝜃2)+𝑦𝐸𝐿2 𝑠𝑖𝑛 𝜃2

𝑥𝐸
2+𝑦𝐸

2  and  

sin 𝜃1 = ±√1 − (
𝑥𝐸(𝐿1+𝐿2 𝑐𝑜𝑠 𝜃2)+𝑦𝐸𝐿2 𝑠𝑖𝑛 𝜃2

𝑥𝐸
2+𝑦𝐸

2 )
2

. 

The 2-DOF planar robot, as presented, is a very 

simple structure. However, the inverse kinematics 

solution is considered to be very cumbersome. 

Therefore, a MLFFNN is designed and trained for 

solving forward and inverse kinematics. The MLFFNN 

is a very simple structure compared to the other types 
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of NNs [12, 37, 38]. In addition, it can be easily and 

successfully applied in various problem domains [32, 

39–43]. The MLFFNN has the properties of adaptivity, 

parallelism, and generalization that it presents [44–46]. 

Furthermore, it can be linear or nonlinear. The 

MLFFNN requires a large number of pairs of input and 

target for the training process [47, 48]. However, this 

disadvantage is considered in the current work.  

In the current paper, the designed MLFFNN is 

trained using Levenberg-Marquardt (LM) learning. The 

LM algorithm can implement the work in a fast manner. 

This algorithm is a type of second-order optimization 

techniques that have a strong theoretical basis and 

provide significantly fast convergence and this is 

considered as an approximation to the Newton’s 

Method [49, 50]. Compared with other learning 

algorithms, LM learning is used because offers a trade-

off between the fast learning speed of the classical 

Newton’s method and the guaranteed convergence of 

the gradient descent [49, 51]. This learning is suitable 

for larger datasets as well as converges in less iterations 

and in shorter time than other training methods. 

The next three sections present the collected data 

that is used for training the MLFFNN as well as the 

MLFFNN design, training, and testing for solving the 

forward kinematics and the inverse kinematics of the 

2-DOF planar robot. 

3. COLLECTED DATA 

In this paper, the MLFFNN is trained and tested 

considering two cases of the data generated using 

MATLAB. The first case is that the data is generated 

considering the joints’ incremental motion. The second 

case is that data is obtained with a real robot considering 

the joints’ sinusoidal motion. The main aim of using 

these types of motions is to show the effectiveness of 

the designed MLFFNN under different motion types of 

the robot whether simple or complex. However, any 

other type of motion can be used and considered. Both 

cases are presented in detail in the following two 

subsections. 

3.1. Generated Data Using Joint’s Incremental 

Motion 

In this case, data is generated in MATLAB 

assuming the following: 𝐿1 = 0.39 𝑚, 𝐿2 = 0.156 𝑚, 

𝜃1 ∈ [0, 90] deg or ∈ [0, 1.57] rad, 𝜃2 ∈ [0, 150] deg 

or ∈ [0, 2.62] rad. Based on Equations (1) to (3), the 

position (𝑥𝐸 , 𝑦𝐸) and the orientation 𝜃𝐸 of the robot 

end-effector are determined. The number of the 

samples generated is 10000. In MATLAB, 𝜃1 and 𝜃2 

are defined as: 

theta1 = (linspace(0,90,10000)*pi/180)', 

theta2 = (linspace(0,150,10000)*pi/180)'. 

All of the data generated is presented in Fig. 3, 

assuming that the incremental motion of the two joints 

takes 10 seconds. 

 

Fig. 3. The data generated in MATLAB used for training 

and testing the MLFFNN. (a) variable 𝜃1 in radians, 

(b) variable 𝜃2 in radians, (c) the position of the 

robot end-effector in 𝑥 − direction (𝑥𝐸), (d) the 

position of the robot end-effector in 𝑦 − 

direction (𝑦𝐸), (e) the orientation of the robot end-

effector (𝜃𝐸) in radians. 

3.2. Generated Data Using Joint’s Sinusoidal 

Motion 

In this case, data is generated using the KUKA 

LWR IV robot, as presented in Fig. 4. The manipulator 

is configured to be as a SCARA type robot (2-DoF for 

planar horizontal motions). In this configuration, Joint 

1 represents KUKA’s A3 (4th joint) and joint 2 

represents KUKA’s A5 (6th joint). 

 

Fig. 4. (a) Motion of joint 1 (A3) and joint 2 (A5). (b) Kuka 

LWR IV manipulator. The figure is taken from ref. 

[29–30]. 

A sinusoidal motion with a variable frequency is 

commanded on both joints of the manipulator. For joint 

1, the frequency is linearly increasing from 0.05 Hz to 

0.17 Hz. For joint 2, the frequency is linearly increasing 
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from 0.05 Hz to 0.23 Hz. The range of the joints’ 

motion is [−80, 10] 𝑑𝑒𝑔 for each joint. This motion is 

the same that was considered in our previous work in 

ref. [29], [30], and defined by the following equation: 

 𝜃1,2(𝑡) =
𝜋

4
(1 − 𝑐𝑜𝑠(2𝜋𝑓𝑡)), (6) 

where 𝑓 is the frequency of the joint’s sinusoidal 

motion. 

Based on Equations (1) to (3), the position (𝑥𝐸 , 𝑦𝐸) 

and the orientation 𝜃𝐸 of the robot end-effector are 

determined considering 𝐿1 = 0.39 𝑚 and 

 𝐿2 = 0.156 𝑚. The number of the samples obtained is 

64862. The time range is [0, 53] seconds. All of the data 

generated is presented in Fig. 5. 

4. MLFFNN FOR FORWARD 

KINEMATICS SOLUTION 

In this section, an MLFFNN is designed and trained 

to solve the problem of the forward kinematics of the 

2-DOF planar robot. Two cases are presented: the first 

case is that an MLFFNN is implemented to find the 

position of the robot end-effector only. The second case 

is that an MLFFNN is implemented to find the position 

and the orientation of the robot end-effector. Both 

implemented MLFFNNs are based on the joint 

variables 𝜃1 and 𝜃2. The following Subsections (4.1) 

and (4.2) present that in detail. 

4.1. MLFFNN For Finding End-Effector Position 

Only 

In this subsection, an MLFFNN is designed and 

trained to find the robot end-effector position only.  

The main inputs for the designed MLFFNN are 

variables 𝜃1 and 𝜃2. The architecture of this NN is 

composed of three layers as follows: 1) the input layer 

which contains the two inputs, 2) the non-linear 

(hyperbolic tangent activation function) hidden layer, 

and 3) the output layer which estimates the position of 

the robot end-effector (𝑥𝐸
′ , 𝑦𝐸

′ ). This estimated position 

is compared with the desired position of the robot end-

effector (𝑥𝐸 , 𝑦𝐸) which is presented in Fig. 3 (c) and 

(d). This MLFFNN architecture is presented in Fig. 6. 

The equations of the feedforward part of the 

designed MLFFNN are given as follows: 

 𝑦𝑗 = 𝜑𝑗(ℎ𝑗) = 𝜑𝑗(∑ 𝑤𝑗𝑖
2
𝑖=0 𝑥𝑖) (7) 

where, 𝑥𝑖 are the inputs to the designed MLFFNN. 

 𝑥0 = 1, 𝑥1 = 𝜃1(𝑘), and 𝑥2 = 𝜃2(𝑘). 

 𝜑𝑗(ℎ𝑗) = tanh(ℎ𝑗) (8) 

 𝑜𝑢𝑡𝑘 =  𝜓𝑘(𝑂𝑘) = 𝜓𝑘(∑ 𝑏𝑘𝑗
𝑛
𝑗=0 𝑦𝑗  ) =  

 = (∑ 𝑏𝑘𝑗
𝑛
𝑗=0 𝑦𝑗  )  

(9)
 

where 𝑘 = 1, 2. 𝑜𝑢𝑡1 = 𝑥𝐸
′  and 𝑜𝑢𝑡2 = 𝑦𝐸

′ . 

 

Fig. 5. Data generated using the KUKA LWR robot and 

considering sinusoidal motion, used for training and 

testing the MLFFNN. (a) variable 𝜃1 in radians, (b) 

variable 𝜃2 in radians, (c) the position of the robot 

end-effector in 𝑥 − direction (𝑥𝐸), (d) the position 

of the robot end-effector in 𝑦 − direction (𝑦𝐸), (e) 

the orientation of the robot end-effector (𝜃𝐸) in 

radians. 

 

Fig. 6. The designed MLFFNN architecture for finding the 

end-effector position only. The drawing of this 
architecture is carried out using the following 

website: https://app.diagrams.net/. 

The desired position of the robot end-effector 

(𝑥𝐸 , 𝑦𝐸) is used only for training the designed 

MLFFNN and the training errors 𝑒1(𝑡) and 𝑒2(𝑡) 

should be as close to zero as possible and given by the 

following equation: 
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 𝑒1(𝑡) = 𝑥𝐸 − 𝑥𝐸
′  , (10) 

 𝑒2(𝑡) = 𝑦𝐸 − 𝑦𝐸
′ . (11) 

The data generated in MATLAB (presented in 

Fig. 3) is used for training the designed MLFFNN. 

From the data, 80% is used for training, 10% for 

validation, and 10% for testing. The main criterion in 

training the MLFFNN is obtaining high performance 

which is the lowest mean squared error (MSE) and the 

lowest training error. After trying and testing many 

different weights’ initializations and a number of 

hidden neurons, the best parameters of the MLFFNN 

that achieve high performance are as follows:  

− The number of hidden neurons is 90,  

− The number of iterations is 152, 

− The lowest MSE is 2.3295 × 10−10. 

− The training time is 46 seconds. The training time 

is not very important because the main purpose is 

to obtain a well-trained MLFFNN that can estimate 

the robot end-effector position correctly. However, 

this training time is very low.  

The results obtained from the training process are 

presented in Fig. 7. 

As shown from the results. the MSE obtained is 

very low and is approximately equal to zero (Fig. 7(a)). 

In addition, regression (Fig. 7(b)) is equal to 1, which 

means that the convergence/approximation between the 

desired robot end-effector position (𝑥𝐸 , 𝑦𝐸) and the 

estimated one by the MLFFNN (𝑥𝐸
′ , 𝑦𝐸

′ ) is very good or 

approximately ideal. This proves that the designed 

MLFFNN is trained very well, and it is qualified to 

estimate the position of the end-effector correctly.  

Once the MLFFNN training is finished completely, 

the trained MLFFNN designed is tested and 

investigated using the same dataset that was used for 

the training to obtain an insight about the 

approximation. The comparison between the desired 

end-effector position (𝑥𝐸 , 𝑦𝐸) and the estimated one 

(𝑥𝐸
′ , 𝑦𝐸

′ ) by the trained MLFFNN is presented in Fig. 8 

and Fig. 9.  

 

(c) The error histogram 

Fig. 7. The results obtained from the training process of the 

designed MLFFNN. 
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Fig. 8. Comparison between the desired position of the end-

effector and the estimated position by the trained 

MLFFNN, in 𝑥 −direction. 

As shown in Fig. 8 and Fig. 9, the 

approximation/convergence between the desired 

position of the robot end-effector and the estimated 

position by the trained NN is very good (approximately 

ideal) whether in 𝑥 − or 𝑦 − direction. The 

approximation error between these positions is very low 

and it is almost zero. Indeed, this proves that the 

proposed and the designed MLFFNN is trained very 

well and is qualified to estimate the position of the robot 

end-effector correctly. We may conclude from these 

results that the MLFFNN is able to find the position of 

the robot end-effector efficiently.  

In the next subsection (4.2), the MLFFNN is used 

to find both the position and the orientation of the robot 

end-effector simultaneously. 

4.2. MLFFNN For Finding Both End-Effector 

Position and Orientation  

In this subsection, an MLFFNN is designed and 

trained to find both the position and the orientation of 

the robot end-effector simultaneously. The same 

protocol presented in Subsection 4.1 is followed here in 

this subsection. 

A. The MLFFNN Design 

The main inputs for this designed MLFFNN are the 

variables 𝜃1 and 𝜃2. The architecture of this NN is 

composed of three layers as follows: 1) the input layer 

which contains the two inputs: 𝜃1 and 𝜃2, 2) the non-

linear (hyperbolic tangent activation function) hidden 

layer, and 3) the output layer, which estimates the 

position (𝑥𝐸
′ , 𝑦𝐸

′ ) and the orientation 𝜃𝐸
′  of the robot 

end-effector. The estimated position and orientation are 

compared with the desired position (𝑥𝐸 , 𝑦𝐸) and 

orientation 𝜃𝐸 of the robot end-effector. This MLFFNN 

architecture is presented in Fig. 10. 

 

Fig. 9. Comparison between the desired position of the end-

effector and the estimated position by the trained 

MLFFNN, in 𝑦 −direction. 

 

Fig. 10. The designed MLFFNN architecture for finding both 

the position and the orientation of the robot end-
effector. The same symbols of the weights are used 

as in Fig. 6, but their values are different. The 
drawing of this architecture is carried out using the 

following website: https://app.diagrams.net/. 
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B. MLFFNN Training and Verification using Data 

Generated from Joint’s Incremental Motion 

The data generated from the joints’ incremental 

motion, which is presented in Fig. 3, is used for training 

the designed MLFFNN. From the data, 80% is used for 

the training, 10% for validation and 10% for testing. 

After trying and testing many different weights’ 

initializations and a number of hidden neurons, the best 

parameters of the MLFFNN that achieve high 

performance (the lowest MSE and the lowest training 

error) are as follows:  

− The number of hidden neurons is 70,  

− The number of iterations is 1000, 

− The lowest MSE is 1.628 × 10−11. 

− The training time is 5 minutes and 21 seconds. This 

time is not very important as discussed before in 

Subsection 4.1.  

The results obtained from the training process are 

presented in Fig. 11. 

As shown from the results presented in Fig. 11, the 

obtained MSE is very low (Fig. 11(a)), and it is 

approximately equal to zero. Furthermore, the 

regression (Fig. 11(b)) is equal to 1, which means that 

the convergence/approximation between the desired 

position (𝑥𝐸 , 𝑦𝐸) and orientation 𝜃𝐸 of the robot end-

effector position and the estimated position (𝑥𝐸
′ , 𝑦𝐸

′ ) 

and orientation 𝜃𝐸
′  by the designed MLFFNN is very 

good. These results prove that the designed MLFFNN 

is trained very well, and it is qualified to correctly 

estimate both the position and the orientation of the 

end-effector, simultaneously.  

Once the MLFFNN training is finished completely, 

the trained MLFFNN designed is tested and 

investigated using the same dataset that was used for 

the training to obtain an insight about the 

approximation. The comparison between the desired 

end-effector position (𝑥𝐸 , 𝑦𝐸) and orientation 𝜃𝐸 and 

the estimated ones (𝑥𝐸
′ , 𝑦𝐸

′ ), 𝜃𝐸
′  by the trained 

MLFFNN is presented in Fig. 12 to Fig. 14.  

As shown from the results presented from Fig. 12 

to Fig. 14, the approximation/convergence between the 

desired position of the robot end-effector and the 

estimated position by the trained MLFFNN is very 

good and it is approximately ideal, whether in 𝑥 − or 

𝑦 − direction. The approximation error between these 

positions is approximately zero. In addition, the 

approximation between the desired orientation and the 

estimated one by the trained MLFFNN is very good and 

the error between them is very low and it is almost zero. 

These results prove that the trained MLFFNN is 

working well and efficiently to estimate correctly both 

the position and the orientation of the robot end-

effector, simultaneously. 

 

(c) The error histogram. 

Fig. 11. The results obtained from the training process of the 

designed MLFFNN using the data from the joint’s 

incremental motion 
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Fig. 12. Comparison between the desired position of the end-

effector and the estimated position by the trained 

MLFFNN, in 𝑥 −direction. 

 

Fig. 13. Comparison between the desired position of the end-

effector and the estimated position by the trained 

MLFFNN, in 𝑦 −direction. 

 

Fig. 14. Comparison between the desired orientation of the 

end-effector and the estimated one by the trained 

MLFFNN. 

The comparison between this trained MLFFNN and 

the one presented in Subsection 4.1, where the position 

of the end-effector is only estimated, is discussed as 

follows. The approximation error between the desired 

and the estimated position in the current case or in the 

previous case presented in Subsection 4.1 is very low 

and close to zero. Also, the approximation error 

between the desired and the estimated orientation is 

very low, and it is close to zero in the current case. We 

may conclude from that whether implementing 

a MLFFNN to estimate only the position of the robot 

end-effector, implementing another MLFFNN to 

estimate the orientation only, or implementing 

a MLFFNN to estimate both the position and the 

orientation, leads to a very low approximation error and 

MSE (being approximately equal to zero). However, 

implementing one MLFFNN to estimate both the 

position and the orientation of the robot end-effector 

will minimize the effort and also the time. This point 

needs further investigation by applying other data. For 

this purpose, the data generated from the joint’s 

sinusoidal motion of the KUKA LWR robot is used. 

This is presented in the next subsection. 
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C. MLFFNN Training and Verification using Data 

from Joint’s Sinusoidal Motion 

The data obtained from the sinusoidal motion with 

the KUKA LWR robot (presented in Fig. 5) is used for 

training the designed MLFFNN presented in Fig. 10 to 

estimate both the position and the orientation of the 

robot end-effector. From this data, 80% is used for the 

training, 10% for validation, and 10% for testing. After 

trying and testing many different weights’ 

initializations and a number of hidden neurons, the best 

parameters of the MLFFNN that achieve high 

performance (the lowest MSE and the lowest training 

error) are as follows: 

− the number of hidden neurons is 90,  

− the number of iterations is 1000, 

− the lowest MSE is 4.1847 × 10−10, 

− the training time is 40 minutes and 52 seconds. This 

time is higher compared to the corresponding one 

in the previous case presented in the subsection 

because the data is higher in the current case. 

The results obtained from the training process are 

presented in Fig. 15. 

As shown from the results presented in Fig. 15, the 

MSE obtained is very low (Fig. 15(a)), and it is 

approximately equal to zero. Furthermore, the 

regression (Fig. 15(b)) is equal to 1, which means that 

the convergence/approximation between the desired 

position (𝑥𝐸 , 𝑦𝐸) and orientation 𝜃𝐸 of the robot end-

effector position and the estimated position (𝑥𝐸
′ , 𝑦𝐸

′ ) 

and orientation 𝜃𝐸
′  by the designed MLFFNN is very 

good or approximately ideal. These results prove that 

the MLFFNN designed is trained very well, and it is 

qualified to correctly estimate both the position and the 

orientation of the end-effector, simultaneously.  

Once the MLFFNN training is finished completely, 

the trained MLFFNN designed is tested and 

investigated using the same dataset that was used for 

the training to obtain an insight about the 

approximation. The comparison between the desired 

end-effector position (𝑥𝐸 , 𝑦𝐸) and orientation 𝜃𝐸 and 

the estimated ones (𝑥𝐸
′ , 𝑦𝐸

′ ), 𝜃𝐸
′  by the trained 

MLFFNN is presented in Fig. 16 to Fig. 18.  

As shown from the results presented in Fig. 16 to 

Fig. 18, the approximation/convergence between the 

desired position of the robot end-effector and the 

estimated position by the trained MLFFNN is very 

good and approximately ideal, whether in 𝑥 − or 𝑦 − 

direction. The approximation error between these 

positions is approximately zero. In addition, the 

approximation between the desired orientation and the 

estimated one by the trained MLFFNN is very good and 

the error between them is very low and close to zero. 

These results prove that the trained MLFFNN is 

working well and efficiently to estimate correctly both 

the position and the orientation of the robot end-

effector, simultaneously. 

 

Fig. 15. The results obtained from the training process of the 
designed MLFFNN using the data obtained from the 

joint’s sinusoidal motion. 
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Fig. 16. Comparison between the desired position of the end-

effector and the estimated position by the trained 

MLFFNN, in 𝑥 −direction. 

 

Fig. 17. Comparison between the desired position of the end-

effector and the estimated position by the trained 

MLFFNN, in 𝑦 −direction. 

 

Fig. 18. Comparison between the desired orientation of the 
end-effector and the estimated one by the trained 

MLFFNN. 

Indeed, the results obtained in this subsection 

support the results obtained in the previous subsection, 

namely that the MLFFNN has an ability to correctly 

estimate the position and the orientation of the robot 

end-effector, regardless the type of the joints’ motion. 

In addition, these results prove that using one MLFFNN 

for estimating both the position and the orientation of 

the robot end-effector simultaneously is a better 

solution since this minimizes the effort and the time 

and, at the same time, very good results are obtained, 

compared with using one MLFFNN for estimating the 

position only and another MLFFNN for estimating the 

orientation only. 

5. MLFFNN FOR INVERSE KINEMATICS 

SOLUTION  

In this section, an MLFFNN is designed and trained 

to solve the problem of the inverse kinematics of the 2-

DOF planar robot. Therefore, the MLFFNN will be 

used to find the joints’ positions based on the position 

and the orientation of the robot end-effector. The same 

steps presented in Section 4 are followed here in this 

section. 

5.1. MLFFNN Design 

In this case, the main inputs for the designed 

MLFFNN are the position (𝑥𝐸 , 𝑦𝐸) and the orientation 
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𝜃𝐸 of the robot end-effector, whereas its outputs are the 

joint variables 𝜃1
′  and 𝜃2

′ . The architecture of this 

MLFFNN is composed of three layers as follows: 1) the 

input layer which contains three inputs, 2) the non-

linear (hyperbolic tangent activation function) hidden 

layer, and 3) the output layer which estimates joint 

variables 𝜃1
′  and 𝜃2

′ . The estimated joints’ positions are 

compared with the desired ones (𝜃1 and 𝜃2). This 

MLFFNN architecture is presented in Fig. 19. 

 

Fig. 19. The designed MLFFNN architecture for finding the 

joints’ positions. The same symbols of the weights 
are used as in Fig. 6 and Fig. 10; however, their 

values are different. The drawing of this architecture 

is carried out using the following website: 

https://app.diagrams.net/. 

5.2. MLFFNN Training and Verification using 

Data Generated from Joint’s Incremental 

Motion 

The data generated from the joint’s incremental 

motion, which is presented in Fig. 3, is used for training 

the designed MLFFNN. From this data, 80% is used for 

training, 10% for validation, and 10% for testing. After 

trying and testing many different weights’ 

initializations and a number of hidden neurons, the best 

parameters of the MLFFNN that achieve high 

performance (the lowest MSE and the lowest training 

error) are as follows:  

▪ The number of hidden neurons is 70,  

▪ The number of iterations is 666, 

▪ The lowest MSE is 1.1031 × 10−11. 

▪ The training time is 2 minutes and 44 seconds.  

The results obtained from the training process are 

presented in Fig. 20. 

As shown from the results presented in Fig. 20, the 

MSE obtained is very low and it is approximately equal 

to zero (Fig. 20(a)). Furthermore, the regression 

obtained (Fig. 20(b)) is equal to 1, which means that the 

convergence/approximation between the desired joints’ 

positions (𝜃1, 𝜃2) and the estimated ones (𝜃1
′ , 𝜃2

′ ) by the 

designed MLFFNN is very good. These results prove 

that the designed MLFFNN is trained very well, and it 

has an ability to correctly estimate the joints 

positions/variables. 

 

Fig. 20. The obtained results from the training process of the 

designed MLFFNN used to find the joints’ positions. 
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Fig. 21. Comparison between the desired joint position 𝜃1 

and the estimated one 𝜃1
′  by the trained MLFFNN. 

 

Fig. 22. Comparison between the desired joint position 𝜃2 

and the estimated one 𝜃2
′  by the trained MLFFNN. 

Once the MLFFNN training is finished completely, 

the trained MLFFNN designed is tested and 

investigated using the same dataset that was used for 

the training to obtain an insight about the 

approximation. The comparison between the desired 

joint variables (𝜃1, 𝜃2) and the estimated ones (𝜃1
′ , 𝜃2

′ ) 

by the trained MLFFNN is presented in Fig. 21 and 

Fig. 22. 

As shown from the results obtained in Fig. 21 and 

Fig. 22, the desired joint position is coinciding with the 

estimated one by the trained MLFFNN. In other words, 

the approximation between them is approximately 

ideal. The approximation error is very low, and it is 

approximately equal to zero. From these results, we 

conclude that the MLFFNN is trained very well and is 

able to correctly find the joints’ positions of the robot. 

In the next subsection, the data obtained from the joint’s 

sinusoidal motion of the KUKA LWR robot is used to 

train and verify the MLFFNN designed. 

5.3. MLFFNN Training and Verification using 

Data from Joint’s Sinusoidal Motion 

The data generated from the sinusoidal joint’s 

motion with KUKA robot (presented in Fig. 5) is used 

for training the designed MLFFNN presented in Fig. 

19. From this data, 80% is used for training, 10% for 

validation, and 10% for testing. After trying and testing 

many different weights’ initializations and a number of 

hidden neurons, the best parameters of the MLFFNN 

that achieve high performance (the lowest MSE and the 

lowest training error) are as follows:  

− the number of hidden neurons is 80, 

− the number of iterations is 666, 

− the lowest MSE is 2.2263 × 10−10, 

− the training time is 19 minutes and 51 seconds, 

− the results obtained from the training process are 

presented in Fig. 23. 

As shown from the results presented in Fig. 23, the 

MSE obtained is very low and it is approximately equal 

to zero (Fig. 23(a)). Furthermore, the regression 

obtained (Fig. 23(b)) is equal to 1, which means that the 

convergence/approximation between the desired joints’ 

positions (𝜃1, 𝜃2) and the estimated ones (𝜃1
′ , 𝜃2

′ ) by the 

MLFFNN designed is very good. These results prove 

that the MLFFNN designed is trained very well, and it 

has an ability to correctly estimate the joints’ 

positions/variables.  

Once the MLFFNN training is finished completely, 

the trained MLFFNN designed is tested and 

investigated using the same dataset that was used for 

the training to obtain an insight about the 

approximation. The comparison between the desired 

joint variables (𝜃1, 𝜃2) and the estimated ones (𝜃1
′ , 𝜃2

′ ) 

by the MLFFNN trained is presented in Fig. 24 and 

Fig. 25. 
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Fig. 23. The results obtained from the training process of the 

MLFFNN designed used to find the joints’ positions. 

 

Fig. 24. Comparison between the desired joint position 𝜃1 

and the estimated one 𝜃1
′  by the trained MLFFNN. 

 

Fig. 25. Comparison between the desired joint position 𝜃2 

and the estimated one 𝜃2
′  by the trained MLFFNN.  
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As shown from the obtained results in Fig. 24 and 

Fig. 25, the desired joint position is coinciding with the 

estimated one by the MLFFNN trained. In other words, 

the approximation between them is approximately 

ideal. The approximation error is very low, and it is 

approximately equal to zero. From these results, we 

conclude that the MLFFNN is trained very well and is 

able to correctly find the joints’ positions of the robot. 

These results support the corresponding ones 

presented in the previous subsection (5.2) and prove 

that the MLFFNN designed can estimate the joints’ 

variables correctly, regardless of the type of joints’ 

motion. 

The results, presented in the current section and the 

previous one, prove that the MLFFNN is efficient to 

solve the problems of the forward and inverse 

kinematics of the 2-DOF SCARA robot, regardless of 

the type of joints’ motion. However, this MLFFNN 

could be applied to any DOF robot. 

6. CONCLUSIONS AND FUTURE WORKS 

In this paper, a MLFFNN is proposed for solving 

the problem of the forward and inverse kinematics of 

the robotic manipulator. For simplicity, the method 

proposed is applied to a 2-DOF planar robot.  

For the forward kinematics solution, two cases are 

presented. The first case is designing and training an 

MLFFNN to find only the position of the robot end-

effector. The second case is designing and training 

another MLFFNN to estimate both the position and the 

orientation of the robot end-effector. The results show 

that the MLFFNN is efficient enough to solve the 

forward kinematics of the manipulator, regardless of 

the type of the joint motion. The approximation error 

between the desired and the estimated position, whether 

in the first case or in second case, is very low and it is 

approximately equal to zero. The approximation error 

between the desired and the estimated orientation is 

also very low and close to zero, in the second case. This 

proves that whether one MLFFNN is used to find the 

position of the robot end-effector only and another 

MLFFNN is used to find only the orientation, or one 

MLFFNN is used to find both the robot end-effector 

position and orientation simultaneously, the 

approximation error and the MSE are very low (being 

approximately equal to zero). However, implementing 

one MLFFNN to estimate both the position and the 

orientation simultaneously is a better solution to 

minimize the effort and the time and to make the 

method more compact.  

For the inverse kinematics solution, a MLFFNN is 

designed and trained to estimate the joints’ positions of 

the manipulator. The inputs of the designed MLFFNN 

are the position and the orientation of the robot end-

effector. The results show that the approximation error 

between the desired and estimated joints’ positions is 

very low, and it is approximately equal to zero. 

Therefore, the MLFFNN trained is able to correctly 

estimate the joints positions of the manipulator.  

The training of any of the MLFFNNs proposed is 

executed in MATLAB using the Levenberg-Marquardt 

algorithm. Two types of data are used for training and 

testing the designed MLFFNN: the first data is 

generated from incremental joint’s motion, whereas the 

second data is obtained during the joint’s sinusoidal 

motion of a real robot.  

The results obtained in this paper motivate us, in 

near future, to use different types of NNs such as 

recurrent NN, cascaded forward NN, a radial basis 

function, etc. for solving the forward and the inverse 

kinematics of the manipulator. In addition, an 

application of the method using more complex robots 

such as the 7-DOF robot will be considered. The whole 

workspace of the robot joints will be used. More 

investigations will be performed for using the artificial 

NN to select a more desirable configuration during the 

solution of the inverse kinematics problem, particularly 

with the 6-DOF or 7-DOF manipulator. 
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