

 ISSN: 2544-0780 | e-ISSN: 2544-1671

DOI: 10.30464/jmee.00300

FORWARD AND INVERSE KINEMATICS

SOLUTION OF A ROBOTIC MANIPULATOR USING

A MULTILAYER FEEDFORWARD NEURAL

NETWORK

Abdel-Nasser SHARKAWY1*, 2

1*Mechatronics Engineering, Mechanical Engineering Department, Faculty of Engineering, South Valley

University, Qena, 83523, Egypt, e-mail: abdelnassersharkawy@eng.svu.edu.eg
2Mechanical Engineering Department, College of Engineering, Fahad Bin Sultan University, Tabuk 47721,

Saudi Arabia

(Received 06 July 2022, Accepted 12 September 2022)

Abstract: In this paper, a multilayer feedforward neural network (MLFFNN) is proposed for

solving the problem of the forward and inverse kinematics of a robotic manipulator. For the forward

kinematics solution, two cases are presented. The first case is that one MLFFNN is designed and

trained to find solely the position of the robot end-effector. In the second case, another MLFFNN

is designed and trained to find both the position and the orientation of the robot end-effector. Both

MLFFNNs are designed considering the joints’ positions as the inputs. For the inverse kinematics

solution, a MLFFNN is designed and trained to find the joints’ positions considering the position

and the orientation of the robot end-effector as the inputs. For training any of the proposed

MLFFNNs, data is generated in MATLAB using two different cases. The first case is that data is

generated assuming an incremental motion of the robot’s joints, whereas the second case is that

data is obtained with a real robot considering a sinusoidal joint motion. The MLFFNN training is

executed using the Levenberg-Marquardt algorithm. This method is designed to be used and

generalized to any DOF manipulator, particularly more complex robots such as 6-DOF and 7-DOF

robots. However, for simplicity, this is applied in this paper using a 2-DOF planar robot. The results

show that the approximation error between the desired output and the estimated one by the

MLFFNN is very low and it is approximately equal to zero. In other words, the MLFFNN is

efficient enough to solve the problem of the forward and inverse kinematics, regardless of the joint

motion type.

Keywords: multilayer feedforward neural network, forward kinematics, inverse kinematics,

2-DOF planar robot, Levenberg-Marquardt algorithm, generated data.

1. INTRODUCTION

Forward kinematics [1–3] refers to determining the

position and the orientation of the robot end-effector

(Cartesian space) based on the joints’ variables. The

forward kinematics problem is always straightforward.

In addition, deriving the equation is easy and no

complexity is found. Inverse kinematics refers to

determining the joints’ variables based on a given

position and orientation for the robot end-effector.

A solution to the problem of inverse kinematics is

complex and difficult. In addition, it is computationally

expensive. Forward kinematics vs. inverse kinematics

is presented in Fig. 1.

Fig. 1. The relationship between forward and inverse

kinematics, [1]. The left side of the figure represents the

joint variable of the manipulator. The right side
represents the position and orientation of the robot end-

effector.

Forward Kinematics

Inverse Kinematics

Joint Space Cartesian Space

:

:

2 Sharkawy A-N. | Journal of Mechanical and Energy Engineering

Different methods have been proposed for solving

the forward kinematics problem of the manipulator

such as Denavit–Hartenberg (DH), the product of

exponential, trigonometric, dual-quaternion, support

vector regression, and neural networks (NNs). In [4],

Denavit and Hartenberg demonstrated that four

parameters were required for the general transformation

between two joints. These four parameters were known

as DH parameters. In addition, these parameters

became a standard to describe robot kinematics. The

DH method is the most consistent and the most concise

method of all. However, it has some limitations [5]. In

[6], Farah and LIU presented forward kinematics using

DH parameters for a 6-DOF surgical robot. The product

of exponential [7] and unit dual quaternions [8] were

based on the screw theory, and they were proposed in

robot kinematics. In [9], Sharkawy and Aspragathos

presented a comparative study between the product of

exponentials formula and the unit dual quaternion

algebra for determining the forward kinematics of

a serial manipulator (i.e. the 7-DOF KUKA LWR

robot). The results showed that the unit dual

quaternions are characterised by higher compactness,

and it facilitates the understanding of the joint axes

geometrical meaning compared to the product of

exponential method. The geometric method [10] was

also proposed to obtain forward kinematics. This

method uses the geometric properties of specific

mechanisms for transforming and reducing the

problem. After that, analytical geometric means are

used to obtain the solutions. An example of this method

was presented in [10], where it was used to find the

closed-form forward kinematics of an H4 parallel robot.

Support vector regression [11] is a supervised machine

learning technique and it is widely used for

classification and regression tasks. NN has the

properties that it can approximate any function and its

ability of generalization under different conditions [12],

[13]. Support vector regression was used to develop

forward kinematics for parallel manipulator robots and the

NN method was used with cable-driven robots [14–17].

A solution of the inverse kinematics problem of the

manipulator as stated in the beginning of this section is

a difficult and quite challenging task [3]. Different

methods were proposed for solving the inverse

kinematics problem such as the closed-form solution

method, numerical methods, evolutionary computing,

and NNs. The closed-form solution method depends on

an analytic expression or any polynomial having a DOF

less than four [2]. This solution takes the advantage of

the robot’s specific geometry for formulating the

mathematical model. This method is divided into types,

algebraic and geometric methods. Examples of

closed-form solution methods were presented in these

references [18–19]. Numerical methods were used to

solve the inverse kinematic problem when the obtained

polynomial in the closed-form solution with more than

four DOF; therefore, the robot did not have a close-form

solution, [20]. Numerical methods are classified into

the following types [2]: the symbolic elimination

method, continuation methods, Iterative Methods, and

methods based on optimization techniques. Examples

of using the numerical methods to solve the inverse

kinematics problem were presented in [21–22]. The

numerical methods lack accuracy when compared with

closed-form methods, [2]. Evolutionary computing was

also proposed for solving the inverse kinematics

problem as in [23–24]. NNs were presented for the

inverse kinematic solution. In [25], Tejomurtula and

Kak proposed structured neural networks to solve

inverse kinematics. They used conventional

backpropagation learning for the training process which

led to several difficulties related to accuracy. To

overcome the problems of accuracy and training time,

they devised a variant of the conventional error

backpropagation learning. NNs based methods were

also proposed in references [3, 26–27].

From this discussion, we can conclude that further

investigation using soft computing-based methods such

as NNs for the forward and particularly inverse

kinematics solution is required. The main issue with the

previous researchers was a low accuracy of NN.

Therefore, improving the NN performance by

achieving a very small (close to zero) mean squared

error (MSE) and an approximation error and optimizing

the NN architecture should be considered and

performed.

The main contribution and aim of this paper cover

the following three issues:

1) The first issue is developing a MLFFNN that can

be generalized and used for solving the problem of

forward kinematics and inverse kinematics of any

DOF manipulator, particularly for complex robots

that have 6-DOF and 7-DOF. For simplicity, the

method is applied with a 2-DOF planar

manipulator in this paper. In addition, the 2-DOF

robot is often used in robotics as testbeds for

various algorithms and theories. A similar

example of this issue is presented in our previous

works in [28]–[32], where we implemented

a collision detection method for human-robot

collaboration. The method in these references was

applied and investigated with 1-DOF and 2-DOF

and 3-DOF robots as simple cases to minimize the

calculations and the human effort. Although the

method was applied with these simple cases, we

concluded that it can be applied with any complex

robot such as 6- or 7- DOF as the same

methodology can be followed with these complex

robots.

2) The second issue is seeking to obtain the best

performance of the designed MLFFNN by

achieving MSE and an approximation error that

 Sharkawy A-N. | Journal of Mechanical and Energy Engineering 3

are close to zero . In other words, this means high

accuracy.

3) The third issue is executing a new methodology in

the case of forward kinematics to investigate the

approximation error between the desired and the

estimated outputs. This methodology considers

two cases:

− The first case is designing and training a MLFFNN

for estimating the robot end-effector position only.

− The second case is designing and training another

MLFFNN for estimating both the robot end-

effector position and orientation.

The main purpose of this methodology is to

demonstrate whether implementing a MLFFNN to

predict only the position of the robot end-effector and

another MLFFNN to predict only the orientation of the

robot end-effector is better or a MLFFNN to predict

both the position and the orientation of the robot end-

effector simultaneously.

For the inverse kinematics solution, a MLFFNN is

designed and trained to estimate the joints’ positions

based on both the position and the orientation of the

robot end-effector.

The Levenberg-Marquardt algorithm is used to

train any of the proposed MLFFNNs. The training is

executed using two types of data: the first data is

generated considering the incremental joint’s motion,

whereas the second data is obtained with a real robot

(i.e., a KUKA LWR robot) considering the sinusoidal

joint’s motion. The simulation work is presented in

detail together with the trained MLFFNN verification.

All this work is executed in MATLAB and using an

Intel®Core™ i5-8250U CPU @ 1.60 GHz processor.

The rest of the paper is divided as follows. Section

2 presents the equations of the forward and the inverse

kinematics of the 2-DOF planar robot using the

geometric solution approach. In Section 3, the collected

data which is used for training and testing the MLFFNN

is discussed. In Section 4, the design, training, and

verification of the MLFFNN for the forward kinematics

solution are presented in detail. Two cases are shown

clearly in this section. Section 5 shows the inverse

kinematics solution based on the proposed MLFFNN.

The design, training, verification of this MLFFNN are

discussed in detail. Finally, Section 6 summarizes the

main points of this paper, and it offers some future

works.

2. FORWARD AND INVERSE

KINEMATICS OF 2-DOF ROBOT

In this section, the forward and the inverse

kinematics analysis of the SCARA type robot (2-DoF

for planar horizontal motions) are presented. The

2-DOF planar robot is often used in robotics as a testbed

for various algorithms and theories, [3, 33]. This robot

is shown in Fig. 2.

Fig. 2. A 2-DOF planar robot.

2.1. Forward Kinematics

Using the geometric solution approach, the forward

kinematics equations of the 2-DOF planar robot are as

follows [1], [9], [34]:

 𝑥𝐸 = 𝐿1 cos 𝜃1 + 𝐿2 cos(𝜃1 + 𝜃2), (1)

 𝑦𝐸 = 𝐿1 sin 𝜃1 + 𝐿2 sin(𝜃1 + 𝜃2). (2)

Equations (1) and (2) present the coordinates

(position) of the robot end-effecter in the frame

attached to the base of the robot O (𝑥0, 𝑦0). The

orientation of the robot end-effecter is described by the

angle of rotation of the frame attached to the end-

effecter relative to the fixed frame attached to the base

of the robot. The orientation of the end-effecter 𝜃𝐸 is

related to the actual joint displacements as follows:

 𝜃𝐸 = 𝜃1 + 𝜃2. (3)

Therefore, equations (1) to (3) present the end-

effector position and orientation viewed from the fixed

coordinate system attached to the base of the robot in

relation to the joint variables 𝜃1 and 𝜃2, [35].

2.2. Inverse Kinematics

Using the geometric solution approach, inverse

kinematics (𝜃1, 𝜃2) are presented as follows [1], [36]:

 𝜃2 = 𝑎𝑟𝑐𝑡𝑎𝑛2(± sin 𝜃2 , cos 𝜃2), (4)

where: cos 𝜃2 =
𝑥𝐸

2+𝑦𝐸
2−𝐿1

2−𝐿2
2

2𝐿1𝐿2
 and sin 𝜃2 =

±√1 − (
𝑥𝐸

2+𝑦𝐸
2−𝐿1

2−𝐿2
2

2𝐿1𝐿2
)

2

.

 𝜃1 = 𝑎𝑟𝑐𝑡𝑎𝑛2(± sin 𝜃1 , cos 𝜃1), (5)

where: cos 𝜃1 =
𝑥𝐸(𝐿1+𝐿2 𝑐𝑜𝑠 𝜃2)+𝑦𝐸𝐿2 𝑠𝑖𝑛 𝜃2

𝑥𝐸
2+𝑦𝐸

2 and

sin 𝜃1 = ±√1 − (
𝑥𝐸(𝐿1+𝐿2 𝑐𝑜𝑠 𝜃2)+𝑦𝐸𝐿2 𝑠𝑖𝑛 𝜃2

𝑥𝐸
2+𝑦𝐸

2)
2

.

The 2-DOF planar robot, as presented, is a very

simple structure. However, the inverse kinematics

solution is considered to be very cumbersome.

Therefore, a MLFFNN is designed and trained for

solving forward and inverse kinematics. The MLFFNN

is a very simple structure compared to the other types

Joint 1

Joint 2

Base

O

4 Sharkawy A-N. | Journal of Mechanical and Energy Engineering

of NNs [12, 37, 38]. In addition, it can be easily and

successfully applied in various problem domains [32,

39–43]. The MLFFNN has the properties of adaptivity,

parallelism, and generalization that it presents [44–46].

Furthermore, it can be linear or nonlinear. The

MLFFNN requires a large number of pairs of input and

target for the training process [47, 48]. However, this

disadvantage is considered in the current work.

In the current paper, the designed MLFFNN is

trained using Levenberg-Marquardt (LM) learning. The

LM algorithm can implement the work in a fast manner.

This algorithm is a type of second-order optimization

techniques that have a strong theoretical basis and

provide significantly fast convergence and this is

considered as an approximation to the Newton’s

Method [49, 50]. Compared with other learning

algorithms, LM learning is used because offers a trade-

off between the fast learning speed of the classical

Newton’s method and the guaranteed convergence of

the gradient descent [49, 51]. This learning is suitable

for larger datasets as well as converges in less iterations

and in shorter time than other training methods.

The next three sections present the collected data

that is used for training the MLFFNN as well as the

MLFFNN design, training, and testing for solving the

forward kinematics and the inverse kinematics of the

2-DOF planar robot.

3. COLLECTED DATA

In this paper, the MLFFNN is trained and tested

considering two cases of the data generated using

MATLAB. The first case is that the data is generated

considering the joints’ incremental motion. The second

case is that data is obtained with a real robot considering

the joints’ sinusoidal motion. The main aim of using

these types of motions is to show the effectiveness of

the designed MLFFNN under different motion types of

the robot whether simple or complex. However, any

other type of motion can be used and considered. Both

cases are presented in detail in the following two

subsections.

3.1. Generated Data Using Joint’s Incremental

Motion

In this case, data is generated in MATLAB

assuming the following: 𝐿1 = 0.39 𝑚, 𝐿2 = 0.156 𝑚,

𝜃1 ∈ [0, 90] deg or ∈ [0, 1.57] rad, 𝜃2 ∈ [0, 150] deg

or ∈ [0, 2.62] rad. Based on Equations (1) to (3), the

position (𝑥𝐸 , 𝑦𝐸) and the orientation 𝜃𝐸 of the robot

end-effector are determined. The number of the

samples generated is 10000. In MATLAB, 𝜃1 and 𝜃2

are defined as:

theta1 = (linspace(0,90,10000)*pi/180)',

theta2 = (linspace(0,150,10000)*pi/180)'.

All of the data generated is presented in Fig. 3,

assuming that the incremental motion of the two joints

takes 10 seconds.

Fig. 3. The data generated in MATLAB used for training

and testing the MLFFNN. (a) variable 𝜃1 in radians,

(b) variable 𝜃2 in radians, (c) the position of the

robot end-effector in 𝑥 − direction (𝑥𝐸), (d) the

position of the robot end-effector in 𝑦 −

direction (𝑦𝐸), (e) the orientation of the robot end-

effector (𝜃𝐸) in radians.

3.2. Generated Data Using Joint’s Sinusoidal

Motion

In this case, data is generated using the KUKA

LWR IV robot, as presented in Fig. 4. The manipulator

is configured to be as a SCARA type robot (2-DoF for

planar horizontal motions). In this configuration, Joint

1 represents KUKA’s A3 (4th joint) and joint 2

represents KUKA’s A5 (6th joint).

Fig. 4. (a) Motion of joint 1 (A3) and joint 2 (A5). (b) Kuka

LWR IV manipulator. The figure is taken from ref.

[29–30].

A sinusoidal motion with a variable frequency is

commanded on both joints of the manipulator. For joint

1, the frequency is linearly increasing from 0.05 Hz to

0.17 Hz. For joint 2, the frequency is linearly increasing

(a)

(b)

(c)

(d)

(e)

External Force Sensor

Joint 2 (A5)

Joint 1(A3)

(a) (b)

 Sharkawy A-N. | Journal of Mechanical and Energy Engineering 5

from 0.05 Hz to 0.23 Hz. The range of the joints’

motion is [−80, 10] 𝑑𝑒𝑔 for each joint. This motion is

the same that was considered in our previous work in

ref. [29], [30], and defined by the following equation:

 𝜃1,2(𝑡) =
𝜋

4
(1 − 𝑐𝑜𝑠(2𝜋𝑓𝑡)), (6)

where 𝑓 is the frequency of the joint’s sinusoidal

motion.

Based on Equations (1) to (3), the position (𝑥𝐸 , 𝑦𝐸)

and the orientation 𝜃𝐸 of the robot end-effector are

determined considering 𝐿1 = 0.39 𝑚 and

 𝐿2 = 0.156 𝑚. The number of the samples obtained is

64862. The time range is [0, 53] seconds. All of the data

generated is presented in Fig. 5.

4. MLFFNN FOR FORWARD

KINEMATICS SOLUTION

In this section, an MLFFNN is designed and trained

to solve the problem of the forward kinematics of the

2-DOF planar robot. Two cases are presented: the first

case is that an MLFFNN is implemented to find the

position of the robot end-effector only. The second case

is that an MLFFNN is implemented to find the position

and the orientation of the robot end-effector. Both

implemented MLFFNNs are based on the joint

variables 𝜃1 and 𝜃2. The following Subsections (4.1)

and (4.2) present that in detail.

4.1. MLFFNN For Finding End-Effector Position

Only

In this subsection, an MLFFNN is designed and

trained to find the robot end-effector position only.

The main inputs for the designed MLFFNN are

variables 𝜃1 and 𝜃2. The architecture of this NN is

composed of three layers as follows: 1) the input layer

which contains the two inputs, 2) the non-linear

(hyperbolic tangent activation function) hidden layer,

and 3) the output layer which estimates the position of

the robot end-effector (𝑥𝐸
′ , 𝑦𝐸

′). This estimated position

is compared with the desired position of the robot end-

effector (𝑥𝐸 , 𝑦𝐸) which is presented in Fig. 3 (c) and

(d). This MLFFNN architecture is presented in Fig. 6.

The equations of the feedforward part of the

designed MLFFNN are given as follows:

 𝑦𝑗 = 𝜑𝑗(ℎ𝑗) = 𝜑𝑗(∑ 𝑤𝑗𝑖
2
𝑖=0 𝑥𝑖) (7)

where, 𝑥𝑖 are the inputs to the designed MLFFNN.

 𝑥0 = 1, 𝑥1 = 𝜃1(𝑘), and 𝑥2 = 𝜃2(𝑘).

 𝜑𝑗(ℎ𝑗) = tanh(ℎ𝑗) (8)

 𝑜𝑢𝑡𝑘 = 𝜓𝑘(𝑂𝑘) = 𝜓𝑘(∑ 𝑏𝑘𝑗
𝑛
𝑗=0 𝑦𝑗) =

 = (∑ 𝑏𝑘𝑗
𝑛
𝑗=0 𝑦𝑗)

(9)

where 𝑘 = 1, 2. 𝑜𝑢𝑡1 = 𝑥𝐸
′ and 𝑜𝑢𝑡2 = 𝑦𝐸

′ .

Fig. 5. Data generated using the KUKA LWR robot and

considering sinusoidal motion, used for training and

testing the MLFFNN. (a) variable 𝜃1 in radians, (b)

variable 𝜃2 in radians, (c) the position of the robot

end-effector in 𝑥 − direction (𝑥𝐸), (d) the position

of the robot end-effector in 𝑦 − direction (𝑦𝐸), (e)

the orientation of the robot end-effector (𝜃𝐸) in

radians.

Fig. 6. The designed MLFFNN architecture for finding the

end-effector position only. The drawing of this
architecture is carried out using the following

website: https://app.diagrams.net/.

The desired position of the robot end-effector

(𝑥𝐸 , 𝑦𝐸) is used only for training the designed

MLFFNN and the training errors 𝑒1(𝑡) and 𝑒2(𝑡)

should be as close to zero as possible and given by the

following equation:

(a)

(b)

(c)

(d)

(e)

Input Layer Hidden Layer Output Layer

6 Sharkawy A-N. | Journal of Mechanical and Energy Engineering

 𝑒1(𝑡) = 𝑥𝐸 − 𝑥𝐸
′ , (10)

 𝑒2(𝑡) = 𝑦𝐸 − 𝑦𝐸
′ . (11)

The data generated in MATLAB (presented in

Fig. 3) is used for training the designed MLFFNN.

From the data, 80% is used for training, 10% for

validation, and 10% for testing. The main criterion in

training the MLFFNN is obtaining high performance

which is the lowest mean squared error (MSE) and the

lowest training error. After trying and testing many

different weights’ initializations and a number of

hidden neurons, the best parameters of the MLFFNN

that achieve high performance are as follows:

− The number of hidden neurons is 90,

− The number of iterations is 152,

− The lowest MSE is 2.3295 × 10−10.

− The training time is 46 seconds. The training time

is not very important because the main purpose is

to obtain a well-trained MLFFNN that can estimate

the robot end-effector position correctly. However,

this training time is very low.

The results obtained from the training process are

presented in Fig. 7.

As shown from the results. the MSE obtained is

very low and is approximately equal to zero (Fig. 7(a)).

In addition, regression (Fig. 7(b)) is equal to 1, which

means that the convergence/approximation between the

desired robot end-effector position (𝑥𝐸 , 𝑦𝐸) and the

estimated one by the MLFFNN (𝑥𝐸
′ , 𝑦𝐸

′) is very good or

approximately ideal. This proves that the designed

MLFFNN is trained very well, and it is qualified to

estimate the position of the end-effector correctly.

Once the MLFFNN training is finished completely,

the trained MLFFNN designed is tested and

investigated using the same dataset that was used for

the training to obtain an insight about the

approximation. The comparison between the desired

end-effector position (𝑥𝐸 , 𝑦𝐸) and the estimated one

(𝑥𝐸
′ , 𝑦𝐸

′) by the trained MLFFNN is presented in Fig. 8

and Fig. 9.

(c) The error histogram

Fig. 7. The results obtained from the training process of the

designed MLFFNN.

 Sharkawy A-N. | Journal of Mechanical and Energy Engineering 7

Fig. 8. Comparison between the desired position of the end-

effector and the estimated position by the trained

MLFFNN, in 𝑥 −direction.

As shown in Fig. 8 and Fig. 9, the

approximation/convergence between the desired

position of the robot end-effector and the estimated

position by the trained NN is very good (approximately

ideal) whether in 𝑥 − or 𝑦 − direction. The

approximation error between these positions is very low

and it is almost zero. Indeed, this proves that the

proposed and the designed MLFFNN is trained very

well and is qualified to estimate the position of the robot

end-effector correctly. We may conclude from these

results that the MLFFNN is able to find the position of

the robot end-effector efficiently.

In the next subsection (4.2), the MLFFNN is used

to find both the position and the orientation of the robot

end-effector simultaneously.

4.2. MLFFNN For Finding Both End-Effector

Position and Orientation

In this subsection, an MLFFNN is designed and

trained to find both the position and the orientation of

the robot end-effector simultaneously. The same

protocol presented in Subsection 4.1 is followed here in

this subsection.

A. The MLFFNN Design

The main inputs for this designed MLFFNN are the

variables 𝜃1 and 𝜃2. The architecture of this NN is

composed of three layers as follows: 1) the input layer

which contains the two inputs: 𝜃1 and 𝜃2, 2) the non-

linear (hyperbolic tangent activation function) hidden

layer, and 3) the output layer, which estimates the

position (𝑥𝐸
′ , 𝑦𝐸

′) and the orientation 𝜃𝐸
′ of the robot

end-effector. The estimated position and orientation are

compared with the desired position (𝑥𝐸 , 𝑦𝐸) and

orientation 𝜃𝐸 of the robot end-effector. This MLFFNN

architecture is presented in Fig. 10.

Fig. 9. Comparison between the desired position of the end-

effector and the estimated position by the trained

MLFFNN, in 𝑦 −direction.

Fig. 10. The designed MLFFNN architecture for finding both

the position and the orientation of the robot end-
effector. The same symbols of the weights are used

as in Fig. 6, but their values are different. The
drawing of this architecture is carried out using the

following website: https://app.diagrams.net/.

Input Layer Hidden Layer Output Layer

8 Sharkawy A-N. | Journal of Mechanical and Energy Engineering

B. MLFFNN Training and Verification using Data

Generated from Joint’s Incremental Motion

The data generated from the joints’ incremental

motion, which is presented in Fig. 3, is used for training

the designed MLFFNN. From the data, 80% is used for

the training, 10% for validation and 10% for testing.

After trying and testing many different weights’

initializations and a number of hidden neurons, the best

parameters of the MLFFNN that achieve high

performance (the lowest MSE and the lowest training

error) are as follows:

− The number of hidden neurons is 70,

− The number of iterations is 1000,

− The lowest MSE is 1.628 × 10−11.

− The training time is 5 minutes and 21 seconds. This

time is not very important as discussed before in

Subsection 4.1.

The results obtained from the training process are

presented in Fig. 11.

As shown from the results presented in Fig. 11, the

obtained MSE is very low (Fig. 11(a)), and it is

approximately equal to zero. Furthermore, the

regression (Fig. 11(b)) is equal to 1, which means that

the convergence/approximation between the desired

position (𝑥𝐸 , 𝑦𝐸) and orientation 𝜃𝐸 of the robot end-

effector position and the estimated position (𝑥𝐸
′ , 𝑦𝐸

′)

and orientation 𝜃𝐸
′ by the designed MLFFNN is very

good. These results prove that the designed MLFFNN

is trained very well, and it is qualified to correctly

estimate both the position and the orientation of the

end-effector, simultaneously.

Once the MLFFNN training is finished completely,

the trained MLFFNN designed is tested and

investigated using the same dataset that was used for

the training to obtain an insight about the

approximation. The comparison between the desired

end-effector position (𝑥𝐸 , 𝑦𝐸) and orientation 𝜃𝐸 and

the estimated ones (𝑥𝐸
′ , 𝑦𝐸

′), 𝜃𝐸
′ by the trained

MLFFNN is presented in Fig. 12 to Fig. 14.

As shown from the results presented from Fig. 12

to Fig. 14, the approximation/convergence between the

desired position of the robot end-effector and the

estimated position by the trained MLFFNN is very

good and it is approximately ideal, whether in 𝑥 − or

𝑦 − direction. The approximation error between these

positions is approximately zero. In addition, the

approximation between the desired orientation and the

estimated one by the trained MLFFNN is very good and

the error between them is very low and it is almost zero.

These results prove that the trained MLFFNN is

working well and efficiently to estimate correctly both

the position and the orientation of the robot end-

effector, simultaneously.

(c) The error histogram.

Fig. 11. The results obtained from the training process of the

designed MLFFNN using the data from the joint’s

incremental motion

 Sharkawy A-N. | Journal of Mechanical and Energy Engineering 9

Fig. 12. Comparison between the desired position of the end-

effector and the estimated position by the trained

MLFFNN, in 𝑥 −direction.

Fig. 13. Comparison between the desired position of the end-

effector and the estimated position by the trained

MLFFNN, in 𝑦 −direction.

Fig. 14. Comparison between the desired orientation of the

end-effector and the estimated one by the trained

MLFFNN.

The comparison between this trained MLFFNN and

the one presented in Subsection 4.1, where the position

of the end-effector is only estimated, is discussed as

follows. The approximation error between the desired

and the estimated position in the current case or in the

previous case presented in Subsection 4.1 is very low

and close to zero. Also, the approximation error

between the desired and the estimated orientation is

very low, and it is close to zero in the current case. We

may conclude from that whether implementing

a MLFFNN to estimate only the position of the robot

end-effector, implementing another MLFFNN to

estimate the orientation only, or implementing

a MLFFNN to estimate both the position and the

orientation, leads to a very low approximation error and

MSE (being approximately equal to zero). However,

implementing one MLFFNN to estimate both the

position and the orientation of the robot end-effector

will minimize the effort and also the time. This point

needs further investigation by applying other data. For

this purpose, the data generated from the joint’s

sinusoidal motion of the KUKA LWR robot is used.

This is presented in the next subsection.

10 Sharkawy A-N. | Journal of Mechanical and Energy Engineering

C. MLFFNN Training and Verification using Data

from Joint’s Sinusoidal Motion

The data obtained from the sinusoidal motion with

the KUKA LWR robot (presented in Fig. 5) is used for

training the designed MLFFNN presented in Fig. 10 to

estimate both the position and the orientation of the

robot end-effector. From this data, 80% is used for the

training, 10% for validation, and 10% for testing. After

trying and testing many different weights’

initializations and a number of hidden neurons, the best

parameters of the MLFFNN that achieve high

performance (the lowest MSE and the lowest training

error) are as follows:

− the number of hidden neurons is 90,

− the number of iterations is 1000,

− the lowest MSE is 4.1847 × 10−10,

− the training time is 40 minutes and 52 seconds. This

time is higher compared to the corresponding one

in the previous case presented in the subsection

because the data is higher in the current case.

The results obtained from the training process are

presented in Fig. 15.

As shown from the results presented in Fig. 15, the

MSE obtained is very low (Fig. 15(a)), and it is

approximately equal to zero. Furthermore, the

regression (Fig. 15(b)) is equal to 1, which means that

the convergence/approximation between the desired

position (𝑥𝐸 , 𝑦𝐸) and orientation 𝜃𝐸 of the robot end-

effector position and the estimated position (𝑥𝐸
′ , 𝑦𝐸

′)

and orientation 𝜃𝐸
′ by the designed MLFFNN is very

good or approximately ideal. These results prove that

the MLFFNN designed is trained very well, and it is

qualified to correctly estimate both the position and the

orientation of the end-effector, simultaneously.

Once the MLFFNN training is finished completely,

the trained MLFFNN designed is tested and

investigated using the same dataset that was used for

the training to obtain an insight about the

approximation. The comparison between the desired

end-effector position (𝑥𝐸 , 𝑦𝐸) and orientation 𝜃𝐸 and

the estimated ones (𝑥𝐸
′ , 𝑦𝐸

′), 𝜃𝐸
′ by the trained

MLFFNN is presented in Fig. 16 to Fig. 18.

As shown from the results presented in Fig. 16 to

Fig. 18, the approximation/convergence between the

desired position of the robot end-effector and the

estimated position by the trained MLFFNN is very

good and approximately ideal, whether in 𝑥 − or 𝑦 −

direction. The approximation error between these

positions is approximately zero. In addition, the

approximation between the desired orientation and the

estimated one by the trained MLFFNN is very good and

the error between them is very low and close to zero.

These results prove that the trained MLFFNN is

working well and efficiently to estimate correctly both

the position and the orientation of the robot end-

effector, simultaneously.

Fig. 15. The results obtained from the training process of the
designed MLFFNN using the data obtained from the

joint’s sinusoidal motion.

 Sharkawy A-N. | Journal of Mechanical and Energy Engineering 11

Fig. 16. Comparison between the desired position of the end-

effector and the estimated position by the trained

MLFFNN, in 𝑥 −direction.

Fig. 17. Comparison between the desired position of the end-

effector and the estimated position by the trained

MLFFNN, in 𝑦 −direction.

Fig. 18. Comparison between the desired orientation of the
end-effector and the estimated one by the trained

MLFFNN.

Indeed, the results obtained in this subsection

support the results obtained in the previous subsection,

namely that the MLFFNN has an ability to correctly

estimate the position and the orientation of the robot

end-effector, regardless the type of the joints’ motion.

In addition, these results prove that using one MLFFNN

for estimating both the position and the orientation of

the robot end-effector simultaneously is a better

solution since this minimizes the effort and the time

and, at the same time, very good results are obtained,

compared with using one MLFFNN for estimating the

position only and another MLFFNN for estimating the

orientation only.

5. MLFFNN FOR INVERSE KINEMATICS

SOLUTION

In this section, an MLFFNN is designed and trained

to solve the problem of the inverse kinematics of the 2-

DOF planar robot. Therefore, the MLFFNN will be

used to find the joints’ positions based on the position

and the orientation of the robot end-effector. The same

steps presented in Section 4 are followed here in this

section.

5.1. MLFFNN Design

In this case, the main inputs for the designed

MLFFNN are the position (𝑥𝐸 , 𝑦𝐸) and the orientation

12 Sharkawy A-N. | Journal of Mechanical and Energy Engineering

𝜃𝐸 of the robot end-effector, whereas its outputs are the

joint variables 𝜃1
′ and 𝜃2

′ . The architecture of this

MLFFNN is composed of three layers as follows: 1) the

input layer which contains three inputs, 2) the non-

linear (hyperbolic tangent activation function) hidden

layer, and 3) the output layer which estimates joint

variables 𝜃1
′ and 𝜃2

′ . The estimated joints’ positions are

compared with the desired ones (𝜃1 and 𝜃2). This

MLFFNN architecture is presented in Fig. 19.

Fig. 19. The designed MLFFNN architecture for finding the

joints’ positions. The same symbols of the weights
are used as in Fig. 6 and Fig. 10; however, their

values are different. The drawing of this architecture

is carried out using the following website:

https://app.diagrams.net/.

5.2. MLFFNN Training and Verification using

Data Generated from Joint’s Incremental

Motion

The data generated from the joint’s incremental

motion, which is presented in Fig. 3, is used for training

the designed MLFFNN. From this data, 80% is used for

training, 10% for validation, and 10% for testing. After

trying and testing many different weights’

initializations and a number of hidden neurons, the best

parameters of the MLFFNN that achieve high

performance (the lowest MSE and the lowest training

error) are as follows:

▪ The number of hidden neurons is 70,

▪ The number of iterations is 666,

▪ The lowest MSE is 1.1031 × 10−11.

▪ The training time is 2 minutes and 44 seconds.

The results obtained from the training process are

presented in Fig. 20.

As shown from the results presented in Fig. 20, the

MSE obtained is very low and it is approximately equal

to zero (Fig. 20(a)). Furthermore, the regression

obtained (Fig. 20(b)) is equal to 1, which means that the

convergence/approximation between the desired joints’

positions (𝜃1, 𝜃2) and the estimated ones (𝜃1
′ , 𝜃2

′) by the

designed MLFFNN is very good. These results prove

that the designed MLFFNN is trained very well, and it

has an ability to correctly estimate the joints

positions/variables.

Fig. 20. The obtained results from the training process of the

designed MLFFNN used to find the joints’ positions.

Input Layer Hidden Layer Output Layer

 Sharkawy A-N. | Journal of Mechanical and Energy Engineering 13

Fig. 21. Comparison between the desired joint position 𝜃1

and the estimated one 𝜃1
′ by the trained MLFFNN.

Fig. 22. Comparison between the desired joint position 𝜃2

and the estimated one 𝜃2
′ by the trained MLFFNN.

Once the MLFFNN training is finished completely,

the trained MLFFNN designed is tested and

investigated using the same dataset that was used for

the training to obtain an insight about the

approximation. The comparison between the desired

joint variables (𝜃1, 𝜃2) and the estimated ones (𝜃1
′ , 𝜃2

′)

by the trained MLFFNN is presented in Fig. 21 and

Fig. 22.

As shown from the results obtained in Fig. 21 and

Fig. 22, the desired joint position is coinciding with the

estimated one by the trained MLFFNN. In other words,

the approximation between them is approximately

ideal. The approximation error is very low, and it is

approximately equal to zero. From these results, we

conclude that the MLFFNN is trained very well and is

able to correctly find the joints’ positions of the robot.

In the next subsection, the data obtained from the joint’s

sinusoidal motion of the KUKA LWR robot is used to

train and verify the MLFFNN designed.

5.3. MLFFNN Training and Verification using

Data from Joint’s Sinusoidal Motion

The data generated from the sinusoidal joint’s

motion with KUKA robot (presented in Fig. 5) is used

for training the designed MLFFNN presented in Fig.

19. From this data, 80% is used for training, 10% for

validation, and 10% for testing. After trying and testing

many different weights’ initializations and a number of

hidden neurons, the best parameters of the MLFFNN

that achieve high performance (the lowest MSE and the

lowest training error) are as follows:

− the number of hidden neurons is 80,

− the number of iterations is 666,

− the lowest MSE is 2.2263 × 10−10,

− the training time is 19 minutes and 51 seconds,

− the results obtained from the training process are

presented in Fig. 23.

As shown from the results presented in Fig. 23, the

MSE obtained is very low and it is approximately equal

to zero (Fig. 23(a)). Furthermore, the regression

obtained (Fig. 23(b)) is equal to 1, which means that the

convergence/approximation between the desired joints’

positions (𝜃1, 𝜃2) and the estimated ones (𝜃1
′ , 𝜃2

′) by the

MLFFNN designed is very good. These results prove

that the MLFFNN designed is trained very well, and it

has an ability to correctly estimate the joints’

positions/variables.

Once the MLFFNN training is finished completely,

the trained MLFFNN designed is tested and

investigated using the same dataset that was used for

the training to obtain an insight about the

approximation. The comparison between the desired

joint variables (𝜃1, 𝜃2) and the estimated ones (𝜃1
′ , 𝜃2

′)

by the MLFFNN trained is presented in Fig. 24 and

Fig. 25.

14 Sharkawy A-N. | Journal of Mechanical and Energy Engineering

Fig. 23. The results obtained from the training process of the

MLFFNN designed used to find the joints’ positions.

Fig. 24. Comparison between the desired joint position 𝜃1

and the estimated one 𝜃1
′ by the trained MLFFNN.

Fig. 25. Comparison between the desired joint position 𝜃2

and the estimated one 𝜃2
′ by the trained MLFFNN.

 Sharkawy A-N. | Journal of Mechanical and Energy Engineering 15

As shown from the obtained results in Fig. 24 and

Fig. 25, the desired joint position is coinciding with the

estimated one by the MLFFNN trained. In other words,

the approximation between them is approximately

ideal. The approximation error is very low, and it is

approximately equal to zero. From these results, we

conclude that the MLFFNN is trained very well and is

able to correctly find the joints’ positions of the robot.

These results support the corresponding ones

presented in the previous subsection (5.2) and prove

that the MLFFNN designed can estimate the joints’

variables correctly, regardless of the type of joints’

motion.

The results, presented in the current section and the

previous one, prove that the MLFFNN is efficient to

solve the problems of the forward and inverse

kinematics of the 2-DOF SCARA robot, regardless of

the type of joints’ motion. However, this MLFFNN

could be applied to any DOF robot.

6. CONCLUSIONS AND FUTURE WORKS

In this paper, a MLFFNN is proposed for solving

the problem of the forward and inverse kinematics of

the robotic manipulator. For simplicity, the method

proposed is applied to a 2-DOF planar robot.

For the forward kinematics solution, two cases are

presented. The first case is designing and training an

MLFFNN to find only the position of the robot end-

effector. The second case is designing and training

another MLFFNN to estimate both the position and the

orientation of the robot end-effector. The results show

that the MLFFNN is efficient enough to solve the

forward kinematics of the manipulator, regardless of

the type of the joint motion. The approximation error

between the desired and the estimated position, whether

in the first case or in second case, is very low and it is

approximately equal to zero. The approximation error

between the desired and the estimated orientation is

also very low and close to zero, in the second case. This

proves that whether one MLFFNN is used to find the

position of the robot end-effector only and another

MLFFNN is used to find only the orientation, or one

MLFFNN is used to find both the robot end-effector

position and orientation simultaneously, the

approximation error and the MSE are very low (being

approximately equal to zero). However, implementing

one MLFFNN to estimate both the position and the

orientation simultaneously is a better solution to

minimize the effort and the time and to make the

method more compact.

For the inverse kinematics solution, a MLFFNN is

designed and trained to estimate the joints’ positions of

the manipulator. The inputs of the designed MLFFNN

are the position and the orientation of the robot end-

effector. The results show that the approximation error

between the desired and estimated joints’ positions is

very low, and it is approximately equal to zero.

Therefore, the MLFFNN trained is able to correctly

estimate the joints positions of the manipulator.

The training of any of the MLFFNNs proposed is

executed in MATLAB using the Levenberg-Marquardt

algorithm. Two types of data are used for training and

testing the designed MLFFNN: the first data is

generated from incremental joint’s motion, whereas the

second data is obtained during the joint’s sinusoidal

motion of a real robot.

The results obtained in this paper motivate us, in

near future, to use different types of NNs such as

recurrent NN, cascaded forward NN, a radial basis

function, etc. for solving the forward and the inverse

kinematics of the manipulator. In addition, an

application of the method using more complex robots

such as the 7-DOF robot will be considered. The whole

workspace of the robot joints will be used. More

investigations will be performed for using the artificial

NN to select a more desirable configuration during the

solution of the inverse kinematics problem, particularly

with the 6-DOF or 7-DOF manipulator.

Funding Acknowledgements and Conflict of

interest

The author states that there is no conflict of interest.

In addition, the author declares that no financial support

has been received for this manuscript.

References

1. S. Kucuk and Z. Bingul, “Robot Kinematics: Forward and

Inverse Kinematics,” in Industrial Robotics: Theory,

Modelling and Control, no. December, S. Cubero, Ed.
Germany, 2006, p. 964.

2. R. Singh, V. Kukshal, and V. S. Yadav, “A review on
forward and inverse kinematics of classical serial

manipulators,” in Lecture Notes in Mechanical

Engineering, Springer Singapore, 2021, pp. 417–428.
3. A.-V. Duka, “Neural Network based Inverse Kinematics

Solution for Trajectory Tracking of a Robotic Arm,”

Procedia Technol., vol. 12, pp. 20–27, 2014.
4. J. Denavit and R. S. Hartenberg, “A Kinematic Notation

for Lower-Pair Mechanisms Based on Matrices,” J. Appl.

Mech. Am. Soc. Mech. Eng., vol. 22, no. 2, pp. 215–221,
1955.

5. M. Himanth and L. V. Bharath, “Forward Kinematics

Analysis of Robot Manipulator Using Different Screw
Operators,” Int. J. Robot. Autom., vol. 3, no. 2, pp. 21–28,

2018.

6. E. Farah and S. G. Liu, “D-H parameters and forward
kinematics solution for 6dof surgical robot,” Appl. Mech.

Mater., vol. 415, no. May, pp. 18–22, 2013.

7. R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical
Introduction to Robotic Manipulation. CRC Press, 1994.

8. J. ‐H Kim and V. R. Kumar, “Kinematics of robot

manipulators via line transformations,” J. Robot. Syst.,
vol. 7, no. 4, pp. 649–674, 1990.

9. A. N. Sharkawy and N. Aspragathos, “A comparative

study of two methods for forward kinematics and Jacobian
matrix determination,” 2017 Int. Conf. Mech. Syst.

Control Eng. ICMSC 2017, no. May, pp. 179–183, 2017.

10. Y. Liu, M. Kong, N. Wan, and P. Ben-Tzvi, “A geometric
approach to obtain the closed-form forward kinematics of

16 Sharkawy A-N. | Journal of Mechanical and Energy Engineering

H4 parallel robot,” J. Mech. Robot., vol. 10, no. 5, pp. 1–

9, 2018.
11. K. R. Müller, A. J. Smoła, G. Rätsch, B. Schölkopf, J.

Kohlmorgen, and V. Vapnik, “Predicting time series with

support vector machines,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 1997,

vol. 1327, pp. 999–1004.
12. S. Haykin, Neural Networks and Learning Machines,

Third Edit. Pearson, 2009.

13. M. A. Nielsen, Neural Networks and Deep Learning.
Determination Press, 2015.

14. A. Morell, M. Tarokh, and L. Acosta, “Solving the

forward kinematics problem in parallel robots using
Support Vector Regression,” Eng. Appl. Artif. Intell., vol.

26, no. 7, pp. 1698–1706, 2013.

15. H. Sadjadian and H. Taghirad, “Comparison of different

methods for computing the forward kinematics of

a redundant parallel manipulator,” J. Intell. Robot. Syst.

Theory Appl., vol. 44, no. 3, pp. 225–246, 2005.
16. A. Ghasemi, M. Eghtesad, and M. Farid, “Neural network

solution for forward kinematics problem of cable robots,”

J. Intell. Robot. Syst. Theory Appl., vol. 60, no. 2, pp. 201–
215, 2010.

17. A. A. Canutescu and R. L. Dunbrack, “Cyclic coordinate

descent: A robotics algorithm for protein loop closure,”
Protein Sci., vol. 12, no. 5, pp. 963–972, 2003.

18. T. Asfour and R. Dillmann, “Human-like Motion of

a Humanoid Robot Arm Based on a Closed-Form
Solution of the Inverse Kinematics Problem,” in

Proceedings of the 2003 IEEE/RSJ Intl. Conference on

Intelligent Robots and Systems, 2003, no. October, pp.
1407–1412.

19. T. Ho, C. G. Kang, and S. Lee, “Efficient closed-form

solution of inverse kinematics for a specific six-DOF
arm,” Int. J. Control. Autom. Syst., vol. 10, no. 3, pp. 567–

573, 2012.

20. W. K., W. K., S. J., and S. J., “Chapter 1: Kinematics,” in
Handbook of robotics, 2008, pp. 9–33.

21. N. Courty and E. Arnaud, “Inverse kinematics using

sequential Monte Carlo methods,” Lect. Notes Comput.
Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 5098 LNCS, pp. 1–10, 2008.

22. M. Sekiguchi and N. Takesue, “Fast and robust numerical
method for inverse kinematics with prioritized multiple

targets for redundant robots,” Adv. Robot., vol. 34, no. 16,

pp. 1068–1078, 2020.
23. P. Kalra, P. B. Mahapatra, and D. K. Aggarwal, “An

evolutionary approach for solving the multimodal inverse

kinematics problem of industrial robots,” Mech. Mach.

Theory, vol. 41, no. 10, pp. 1213–1229, 2006.

24. R. Köker, “A neuro-genetic approach to the inverse
kinematics solution of robotic manipulators,” Sci. Res.

Essays, vol. 6, no. 13, pp. 2784–2794, 2011.

25. S. Tejomurtula and S. Kak, “Inverse kinematics in
robotics using neural networks,” Inf. Sci. (Ny)., vol. 116,

no. 2, pp. 147–164, 1999.

26. A. R. J. Almusawi, L. C. Dülger, and S. Kapucu, “A New
Artificial Neural Network Approach in Solving Inverse

Kinematics of Robotic Arm (Denso VP6242),” Comput.

Intell. Neurosci., vol. 2016, pp. 1–10, 2016.
27. A. Csiszar, J. Eilers, and A. Verl, “On solving the inverse

kinematics problem using neural networks,” 2017 24th

Int. Conf. Mechatronics Mach. Vis. Pract. M2VIP 2017,
vol. 2017-Decem, pp. 1–6, 2017.

28. A.-N. Sharkawy and N. Aspragathos, “Human-Robot

Collision Detection Based on Neural Networks,” Int. J.
Mech. Eng. Robot. Res., vol. 7, no. 2, pp. 150–157, 2018.

29. A.-N. Sharkawy, P. N. Koustoumpardis, and N.

Aspragathos, “Manipulator Collision Detection and
Collided Link Identification based on Neural Networks,”

in Advances in Service and Industrial Robotics. RAAD

2018. Mechanisms and Machine Science, A. Nikos, K.
Panagiotis, and M. Vassilis, Eds. Springer, Cham, 2018,

pp. 3–12.

30. A. N. Sharkawy, P. N. Koustoumpardis, and N.
Aspragathos, “Neural Network Design for Manipulator

Collision Detection Based only on the Joint Position

Sensors,” Robotica, vol. 38, no. Special Issue 10: Human–
Robot Interaction (HRI), pp. 1737–1755, 2020.

31. A. N. Sharkawy, P. N. Koustoumpardis, and N.

Aspragathos, “Human–robot collisions detection for safe
human–robot interaction using one multi-input–output

neural network,” Soft Comput., vol. 24, no. 9, pp. 6687–

6719, 2020.
32. A.-N. Sharkawy and A. A. Mostfa, “Neural Networks’

Design and Training for Safe Human-Robot

Cooperation,” J. King Saud Univ. - Eng. Sci., 2021.

33. A.-N. Sharkawy and P. N. Koustoumpardis, “Dynamics

and computed-torque control of a 2-DOF manipulator:

Mathematical analysis,” Int. J. Adv. Sci. Technol., vol. 28,
no. 12, pp. 201–212, 2019.

34. Y. D. Patel and P. M. George, “Performance Measurement

and Dynamic Analysis of Two Dof Robotic Arm
Manipulator,” Int. J. Res. Eng. Technol., vol. 02, no. 09,

pp. 77–84, 2013.

35. H. H. Asada, Introduction to Robotics. Department of
Mechanical Engineering, Massachusetts Institute of

Technology, 2005.

36. R. V. Neeraj Kumar and R. Sreenivasulu, “Inverse
Kinematics (IK) Solution of a Robotic Manipulator using

PYTHON,” J. Mechatronics Robot., vol. 3, no. 1, pp.

542–551, 2019.
37. J. Schmidhuber, “Deep learning in neural networks: An

overview,” Neural Networks, vol. 61, pp. 85–117, 2015.

38. A.-N. Sharkawy, “Principle of Neural Network and Its
Main Types: Review,” J. Adv. Appl. Comput. Math., vol.

7, pp. 8–19, 2020.

39. S. C. Chen, S. W. Lin, T. Y. Tseng, and H. C. Lin,
“Optimization of back-propagation network using

simulated annealing approach,” in 2006 IEEE

International Conference on Systems, Man and
Cybernetics, 2006, pp. 2819–2824.

40. M. A. Sassi, M. J. D. Otis, and A. Campeau-Lecours,

“Active stability observer using artificial neural network
for intuitive physical human–robot interaction,” Int. J.

Adv. Robot. Syst., vol. 14, no. 4, pp. 1–16, 2017.

41. E. De Momi, L. Kranendonk, M. Valenti, N. Enayati, and
G. Ferrigno, “A Neural Network-Based Approach for

Trajectory Planning in Robot–Human Handover Tasks,”

Front. Robot. AI, vol. 3, no. June, pp. 1–10, 2016.

42. A. N. Sharkawy, P. N. Koustoumpardis, and N.

Aspragathos, “A neural network-based approach for
variable admittance control in human–robot cooperation:

online adjustment of the virtual inertia,” Intell. Serv.

Robot., vol. 13, no. 4, pp. 495–519, 2020.
43. A.-N. Sharkawy, P. N. Koustoumpardis, and N.

Aspragathos, “A recurrent neural network for variable

admittance control in human–robot cooperation:
simultaneously and online adjustment of the virtual

damping and Inertia parameters,” Int. J. Intell. Robot.

Appl., vol. 4, no. 4, pp. 441–464, 2020.
44. A. B. Rad, T. W. Bui, V. Li, and Y. K. Wong, “A NEW

ON-LINE PID TUNING METHOD USING NEURAL

NETWORKS,” IFAC Proc. Vol. IFAC Work. Digit.
Control Past, Present Future. PID Control, vol. 33, no. 4,

pp. 443–448, 2000.

45. S. A. Elbelady, H. E. Fawaz, and A. M. A. Aziz, “Online
Self Tuning PID Control Using Neural Network for

Tracking Control of a Pneumatic Cylinder Using Pulse

Width Modulation Piloted Digital Valves,” Int. J. Mech.

 Sharkawy A-N. | Journal of Mechanical and Energy Engineering 17

Mechatronics Eng. IJMME-IJENS, vol. 16, no. 3, pp.

123–136, 2016.
46. R. Hernández-Alvarado, L. G. García-Valdovinos, T.

Salgado-Jiménez, A. Gómez-Espinosa, and F. Fonseca-

Navarro, “Neural Network-Based Self-Tuning PID
Control for Underwater Vehicles,” sensors, vol. 16, no. 9:

1429, pp. 1–18, 2016.

47. P. Jeatrakul and K. W. Wong, “Comparing the
performance of different neural networks for binary

classification problems,” in 2009 8th International

Symposium on Natural Language Processing, SNLP ’09,
2009, pp. 111–115.

48. D. Anderson and G. McNeill, “Artificial neural networks

technology: A DACS state-of-the-art report,” Utica, New
York, 1992.

49. K. Du and M. N. S. Swamy, Neural Networks and

Statistical Learning. Springer, 2014.

50. D. W. Marquardt, “An Algorithm for Least-Squares

Estimation of Nonlinear Parameters,” J. Soc. Ind. Appl.

Math., vol. 11, no. 2, pp. 431–441, 1963.
51. M. T. Hagan and M. B. Menhaj, “Training Feedforward

Networks with the Marquardt Algorithm,” IEEE Trans.

NEURAL NETWORKS, vol. 5, no. 6, pp. 2–6, 1994.

Biographical note

Abdel-Nasser Sharkawy

graduated with a first-class

honors degree (B.Sc.) in May

2013 from Mechatronics

Engineering, Mechanical

Engineering Department, South

Valley University (SVU) and

followed this nomination as

a demonstrator (a teaching

assistant) at the same university.

Sharkawy received his M.Sc.

degree in Mechatronics Engineering in April 2016 and

followed this nomination as an assistant lecturer at the same

university (SVU). In March 2020, Sharkawy received his

Ph.D. degree from Robotics Group, Department of Mechanical

Engineering and Aeronautics, University of Patras, Patras,

Greece. His PhD was about “Intelligent Control and

Impedance Adjustment for Efficient Human-Robot

Cooperation”. Dr. Sharkawy has been a lecturer (Assistant

Professor) at Mechatronics Engineering, Mechanical

Engineering Department, SVU, Egypt from June 2020 to

present as a permanent Job. During this period, Sharkawy had

a good experience for teaching the following under-graduate

courses: Automatic Control, Theory of Machines and

Mechanisms, Measurements and Instrumentations, and

Engineering Mathematics, and the following postgraduate

courses: Robotics Dynamics and Advanced Control Theory

and Its Applications I. From (15 April to 30 November), 2021,

Sharkawy was a Postdoctoral Researcher at Humanoid and

Cognitive Robotics Group, Department of Cybernetics,

Faculty of Electrical Engineering, the Czech Technical

University in Prague, Prague, the Czech Republic. From

September 2022, Sharkawy is an assistant professor at

Mechanical Engineering Department, College of Engineering,

Fahad Bin Sultan University, Tabuk, Saudi Arabia. Sharkawy

has published more than 30 papers in international scientific

journals, book chapters and international scientific

conferences. His published work has attracted more than 375

citations (h-index: 10). He is a member of the editorial board

of the International Journal of Robotics and Control Systems

(IJRCS), SVU-International Journal of Engineering Sciences

and Applications (SVU-IJESA), and Journal of Advances in

Applied & Computational Mathematics (2020-2022). He

serves as a reviewer for ca. 28 journals and 10 conferences. He

was a student member of IEEE RAS (2018-2019). His research

areas of interest include robotics, human-robot interaction,

mechatronic systems, neural networks as well as control and

automation.

