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Abstract: This article presents numerical investigation of isotropic dissimilar material joints. 

Dissimilar material joints are broadly used in in various structures, including offshore, nuclear, 

electronic packaging, IC chip and spacecraft various fields of science and technology. In bi-

material joints two different material are bonded with common interface region. High stress 

concentration occur at the interface of the joint under thermo-mechanical loadings due to the 

difference in the elastic properties and the thermal expansion coefficients of dissimilar materials. 

The stresses acting along the interface of dissimilar material joints are very important to 

determine whether the structure is reliable or not for operation. The main purpose of this research 

is to provide finite element solutions to predict the stress distribution at the interface of the joint 

based on the theory of elasticity. 

Keywords: Numerical Investigation, Dissimilar material joints, Stress concentration, Stress 

distributions, Theory of elasticity. 

 

1. INTRODUCTION 

Recently finite element analysis have become the 

most convenient analyst’s tool and have dealt with the 

real world of design engineering. Now CAD software 

has built-in FEA capabilities and researchers use FEA 

as an everyday design tool in support of the product 

design process. 

In IC chip including SIM card bonded joints are 

used. Bonded joint refers to the joint in which two or 

more materials are joined by means of adhesive. When 

mechanical or thermal load acts on IC chip, large 

stress develops in the interface, actually near the vertex 

causing the bonded joint to deboned damaging the 

component. For this reason the electronic circuit is failed. 

Strength of bi-material joint greatly depends on 

the orientation of physical properties and material 

structure. These geometrical parameters affect the 

performances of a bonded joint. These discontinuities 

may cause singularities in the stress fields or very 

stress concentration near the vertex of the bonding 

edges. This stress concentration/singularity may lead 

to the delamination initiation in the local area, and 

subsequently to the global failure of the joint 

structures [1]. 

Previously many analysis have done in the 

literature of the dissimilar joints. Several research 

studies have been conducted and reported to determine 

permissible stress levels, criteria of failure and 

material behavior at the interface of bi metallic joint. 

Hideo Koguchi analyzed stress singularity at three 

dimensional bonded joints [2]. Somnath Somadder 

and Md. Shahidul Islam investigated stress and 

displacement field of cylinder subjected to thermo-

mechanical loadings by using finite element method 

[3]. A. Barut, I. Guven and E.  Madenci determined 

singular stress field at multiple dissimilar material 

joints subjected to mechanical and thermal loading [4]. 

Hideo Koguchi and M. Nakajima investigated the 

variation of intensity of singular stress field with 

interlayer thickness in three-dimensional three-layered 

joint due to external load using boundary element 

method [5]. Hideo Koguchi, Yasuyuki Tsukada and 

Takahiko Kurahashi analyzed three dimensional 

singular strain field employing digital image 

correlation method near the corner of SI chip [6]. C. 

Luangarpa and Hideo Koguchi investigated 3D 

dissimilar material bonded joints using conservative 

integral one real singularity [7]. Somnath Somadder 

and Md. Shahidul Islam investigated stress field of 

a thick walled orthotropic bonded cylinder under 
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pressure and temperature [8]. D. Munz, A. Matthias 

and Y. Y. Yang determined thermal stresses in 

ceramic-metal joint having an inter-layer [9]. H. 

Pengfei, H. Ishikawa and Y. Kohno analyzed order of 

stress singularity at the corner of a diamond shaped 

rigid inclusion under bending [10]. 

2. ANALYTICAL SOLLUTION 

It is a law of nature that “matter change shapes by 

temperature changes.” For most materials, “Increase 

temperature will make its shape larger, and the reverse 

is true too.” Almost all metals expand with 

temperature increase, and contract with decrease of 

temperature. In general temperature, or temperature 

changes in a solid may induce the following effects. 

1. Temperature increase will change material 

properties: Such as decrease the Young’s modulus 

and yield strength of materials. 

2. Induce thermal stresses that will be added to 

mechanically induced stresses in solid structures. 

3. Induce creep of the material, and there by make 

materials vulnerable for failure at high 

temperature. 

2.1. Causes of thermal stress  

There are two causes of thermal stresses in solid 

structures. 

A uniform temperature 

A uniform temperature increase in a solid rod with 

both ends fixed will induce compressive stress in the 

rod with an amount equal to: 

 E Tσ α= − ∆ , (1) 

where, � = the coefficient of thermal expansion with a 

unit of /°�, �� = temperature rise from a reference 

temperature, E=Modulus of elasticity of the material. 

Solid with non-uniform temperature distributions 

Stress induced by non-uniform temperature 

distributions of solid cause internal restraints for 

thermal expansion or contractions.  

For two dimensional thermal stress problem, there 

will be two normal strains ��� and ��� along with 

a shear strain 	��� because of different mechanical 

properties in the x and y directions for anisotropic 

materials. The thermal strain matrix for anisotropic 

material is then: 

 
xT

T yT

xyT

ε
ε ε

γ

 
 =  
 
 

. (2) 

For the case of plane stress in an isotropic material 

with coefficient of thermal expansion � subjected to 

temperature rise �. The thermal strain matrix 

becomes: 

 

0
T

T

T

α
ε α

 
 =  
 
 

. (3) 

No shear strains caused by a change in 

temperatures of isotropic materials, only expansion or 

contraction. 

For this case plane strain in an isotropic material, 

the thermal strain matrix is: 

 
( )1

0
T

T

T

α
ε ν α

 
 = +  
 
 

. (4)
 

For a constant thickness and constant triangular 

element the thermal force matrix can be obtained such as: 

The total strain energy is given as: 

 
0

V

U u dV=  . (5) 

For a simple one dimensional rod thermal strain: 

 x
x T

E

σε ε= + . (6) 

Let, 
11

D
E

−=  then in general matrix form equation 

can be written as: 

 [ ] 1

T
Dε σ ε−= + . (7) 

We solve for 
 as 

 ( )T
Dσ ε ε= − . (8) 

The strain energy per unit volume 

 ( )0

1

2
Tu σ ε ε= − , (9) 

 ( ) ( )0

1

2

T

T Tu Dε ε ε ε∴ = − − . (10) 

The transpose is needed on the strain matrix to 

multiply matrices properly. Now: 

 ( ) ( )1

2

T

T T

V

U D dVε ε ε ε= − − . (11) 

Using Bdε = in equation (11): 

 ( ) ( )1

2

T

T T

V

U Bd D Bd dVε ε= − − . (12) 

Simplifying(12) 

 ( )1

2

TT T T T T

T T T T

V

U d B DBd d B D DBd D dVε ε ε ε= − − + . (13) 

The first term in the equation (13) is the strain 

energy due to stress produced from mechanical 

loading – that is: 
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 1

2
T T

L

V

U d B DBddV=  . (14)
 

Terms 2 and 3 in equation (13) are identical and 
can be written together as: 

 1

2

T
T

T T

V

U d B D dVε=  . (15)
 

The last and fourth term is a constant and drops 

out when principal of minimum potential energy is 

applied by setting: 

 
0

U

d

∂ =
∂ . (16)

 

Therefore letting 
T L

U U U= + and substituting 

equation (14) and (15) into (16) we obtain: 

 TL

V

U
B DBddV

d

∂ =
∂  , (17)

 

 { }TT
T T

V

U
B D dV f

d
ε∂ = =

∂  . (18)
 

Recalling equation (3): 

 { }T
Tε α=  Q . (19) 

Thermal force matrix,  

 { } [ ] [ ]{ }
0

TL

Tf A B D T dxα=  . (20)
 

For a constant thickness (t), constant-strain 

triangular element equation (20) can be simplified for 

two dimensional case as: 

 { }T
f = [ ] [ ]{ }T

TB D tAε . (21) 

By substituting equation for ��and �� as 

follows: 

 

[ ] 2

1 0

1 0
1

1
0 0

2

E
D

ν
ν

ν
ν

 
 
 =  −  −
 
 

, (22)

 

 [ ] i j m
B B B B =   , (23) 

Thermal force matrix becomes: 

 

{ }
2(1 )

i

i

j

T

j

m

m

EtT
f

β
γ
βα
γν
β
γ

 
 
 
  =  −  
 
 
  

. (24)

 

2.2. Stress/Strain Relationships 

Three dimensional stress/strain relationships for an 

isotropic body will be developed. This is done by 

considering the response of a body imposed stresses. 

The body is subjected to stresses 
�, 
�and 
� 

independently as shown in figure. 

 

Fig. 1. Element subjected to normal stress acting in three 
mutually perpendicular directions 

Consider, the stress in the X direction produces 

a positive strain: 

 x

x
E

σε ′ = . (25) 

The positive stress in the y direction produces 

a negative strain in the x direction as a result of 

Poisson’s effect given by: 

 y

x
E

νσ
ε ′′ = − . (26) 

The positive stress in the z direction produces 

a negative strain in the x direction as a result of 

Poisson’s effect given by: 

 z
x

E

νσε ′′′ = − . (27) 

Using superposition we obtain: 

 yx z
x

E E E

νσσ νσε = − − . (28) 

The strains in the y and z directions can be 

obtained in the similar manner: 

 

yx z
y

yx z
z

E E E

E E E

σσ σε ν ν

σσ σε ν ν

= − + −

= − − +
. (29)

 

Solving equations (28) and (29) we obtain normal 

stresses: 

 
( )( ) ( )

( )( ) ( )

( )( ) ( )

1
1 1 2

1
1 1 2

1
1 1 2

x x y z

y x y z

z x y z

E

E

E

σ ε ν νε νε
ν ν

σ νε ν ε νε
ν ν

σ νε νε ν ε
ν ν

 = − + + + −

 = + − + + −

 = + + − + −

. (30)

 

Using � = �	 we obtain: 

 xy

xy
G

τ
γ = , yz

yz
G

τ
γ = , zx

zx
G

τγ = . (31) 
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Rearranging equation (31) we have, 

 
xy xy

Gτ γ= , 
yz yzGτ γ= , 

zx zx
Gτ γ= . (32) 

The stresses can be expressed in matrix form 

 

( )( )

1 0 0 0

1 0 0 0

1 0 0 0

1 2
0 0 0 0 0

21 1 2
1 2

0 0 0 0 0
2

1 2
0 0 0 0 0

2

x

y

z

xy

yz

zx

E

ν ν ν
ν ν νσ
ν ν νσ

νσ
τ ν ν

ντ
τ ν

− 
 −   

   −
   −    =   + −   −   
   
    −

 
 

, (33)

 

where,  

 

( )2 1

E
G

ν
=

+
, (34)

 

 

[ ] ( )( )

1 0 0 0

1 0 0 0

1 0 0 0

1
0 0 0 0 0

21 1 2
1

0 0 0 0 0
2

1
0 0 0 0 0

2

E
D

ν ν ν
ν ν ν
ν ν ν

ν

ν ν
ν

ν

− 
 − 
 −
 − =  + −  −
 
 
 −
 
 

. (35)

 

3. FINITE ELEMENT MODEL 

Using ABAQUS finite element software is used 

for the generation of finite element model. Simulation 

was done by considering the effect of thermo-

mechanical loads. Coupled temperature displacement 

step is used for stress analysis. 

3.1. Physical aspects of the model 

In this analysis two rectangular bars have been 

considered to analyze. The bars having length 10 m 

and width 10 m. 

 

Fig. 2. Mesh of the model. 

Since at the interface material property changes so 

bias has been used so there is more element near the 

interface than the other regions. As this is a 2D FEM 

analysis plane stress condition is considered. As this is 

a thermo-mechanical analysis mesh element type is 

used CPE8RT which is a 8-node biquadratic 

displacement, bilinear temperature, reduced 

integration. 

3.2. Material properties 

In this analysis, material Aluminum, and Steel is 

used. Here aluminum is used as upper material, steel is 

used as lower material. 

Tab. 1. Properties of the materials used for the analysis 

Material 
E 
(Gpa) 

V K (W.m-1.k-1) � (°�) 

Aluminium 72 0.33 234 24e-6 

Steel 210 0.3 19.5 11.6e-6 

 

3.3. Boundary Conditions 

 

Fig. 3. Model showing boundary condition of the analysis 

In this analysis the lower surface is fixed and 

mechanical load is applied on the upper surface. Left 

side of the object is at 500℃ and right side of the 

object is at 25°C. After creating the parts and 

assigning material properties the parts are assembled 

together. By creating coupled temperature displacment 

step and applying proper boundary and loading 

conditions the problem was solved properly. 

4. RESULTS AND DISCUSSIONS 

All simulated results are plotted along the interface 

to observe stress and displacement characteristics. The 

graphical illustrations are presented below. 
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Fig. 4. Variation of 
11 along the length at the interface of 
dissimilar material joint 

From the Fig. 4 variation of 
11 along the length at 

the interface of dissimilar material joint is observed. 

Since high thermal loadings are applied at the left side 

of the model high stress developes at the left region 

and thus satisfying the boundary condition. Very high 

stress occur at the interface since thermo-mechanical 

load is applied which may may lead to the 

delamination initiation in the local area and failure of 

the joint structures. 

 

Fig. 5. Variation of 
12 along the length at the interface of 
dissimilar material joint 

 

Fig. 6. Variation of 
22 along the length at the interface of 
dissimilar material joint 

From the Fig. 5, Fig. 6 it is observed that 

distribution of normal stress 
22 is symmetric in nature 

and variation of shear stress 
12 is anti-symmetric in 

nature. 

 

Fig. 7. Variation of �1 along the length at the interface of 
dissimilar material joint 

 

Fig. 8. Variation of �2 along the length at the interface of 
dissimilar material joint 

Fig. 7 and Fig. 8. indicates the variation of 

displacement along the length at the interface of 

dissimilar material joint. Variation of u1 is quite linear 

in nature but distribution of u2 varies sharply at the left 

side region. 

From the Fig. 9 it is observed that the common 

interface of bi-material occurs at 10 m. The illustration 

indicates the continuity of stress distribution at the 

interface and thus satisfying the boundary conditions. 

It also indicates that the joint is reliable and there is no 

crack at the joint since there is no discontinuity at the 

interface of dissimilar material joint. 

From the Fig. 10 it is observed that the common 

interface of bi-material occurs at 10 m. The illustration 

indicates the continuity of displacement distribution at 

the interface and thus satisfying the boundary 

conditions. It also indicates that the joint is reliable 

and there is no crack at the joint since there is no 

discontinuity at the interface of dissimilar material 

joint. 
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Fig. 9. Variation of stress tensor along the length showing continuity at the interface of dissimilar material joint 

 

Fig. 10. Variation of displacement tensor along the length showing continuity at the interface of dissimilar material joint 

5. CONCLUSIONS 

The carried out research on the thermo-mechanical 

stress analysis of dissimilar material using FEM prove 

that high stress concentration occurs at the interface 

region than the other regions. Stress continuity is 

a must for a reliable dissimilar material joint. The 

normal stress distribution is symmetric in nature but 

the shear stress distribution is anti-symmetric in nature 

at the interface of joint. Extra care should be provided 

at the interface region to prevent failure as high stress 

concentration occurs at the interface region than the 

other regions. The thermal loadings have significant 

effect on the stress distribution at the interface of joint. 

The combined effects of pressure and temperature 

must be taken into account when designing dissimilar 

material joints to ensure reliability of the structure. 

Nomenclature 

Symbols 


xx , 
yy ,
zz – Normal stress, Pa 

xy, 
yz , 
zz – S hear stress, Pa 
εx, εy, εz – Normal strain 
εxy, εyz, εzx – Shear strain 
E – Young modulus, MPa 
G – Shear   modulus, MPa 
ϑ – Poisson ratio 
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