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Abstract: In our earlier papers a hybrid adsorption-compression refrigeration cycle was 

presented. The hybrid, two stages cycle is based only on the natural refrigerants: water and carbon 

dioxide. The main advantage of the hybrid cycle is that the carbon dioxide compression cycle is 

subcritical because during the year-round operation it is possible to maintain the condensing 

temperature below 20°C. During the hot season, this is achieved by adsorption cooling, during 

cold seasons the wet cooling tower is sufficient. Already several years of experience, allowed to 

gather a considerable amount of measurement data. The refrigeration system is working in our 

laboratory constantly since 2013. In 2015 the adsorption system was upgraded by the 

manufacturer. In 2017 frequency inverter for wet tower fan controlling was introduced. The 

refrigeration chamber was used for tests with different content and operation of the refrigeration 

chamber (loading and unloading). The assumed CO2 evaporating temperature was -35°C. The 

averaged for HT (High Temperature) part of the cascade (adsorption cycle only) COPHT=0.51 for 

the whole year 2018. This may be considered a very good performance. Averaged total COP for 

the cascade system: COP=0.9 compared to COP=0.84 for compression only refrigeration cascade, 

with much higher TEWI index. For comparison for two-stage compression (R407CHT+R744LT) 

cycle was used. This means that if the cooling tower fan operation is controlled using an inverter, 

adjusted to the actual heat removal demand, the hybrid cycle is not only ecological but also 

energetically efficient. 
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1. INTRODUCTION 

The application of carbon dioxide as refrigerant is 

becoming increasingly popular due to the Montreal 

Protocol (1987) regulation. Carbon dioxide is 

introduced in compression systems, but due to the low 

critical temperature, the cycle requires very high 

pressure at the discharge side of the compressor and 

low efficiency is obtained. Therefore carbon dioxide 

cycles are used for low temperature (LT) stage at the 

two-stage refrigerating systems. On the other side 

sorption systems as LiBr/H2O absorption or zeolite 

adsorption systems where water is the working fluid 

has low-temperature limit about 5-8°C. This limits its 

application for refrigeration. Coupling two systems: 

sorption at the high-temperature stage and CO2 at the 

low-temperature stage, combines the possibility to use 

waste heat or solar heat as an energy source for the 

high-temperature stage, allowing the reduction of 

discharge pressure in the condenser of CO2 at the LT 

stage. In the HT (High Temperature) compression 

cycles another refrigerant, such as R410A, is 

frequently used. Several papers on CO2 applications in 

different refrigerating cycles has been shown in recent 

years [1]. Absorption systems are increasingly popular 

but mostly as one stage air cooling and heat pump 

systems using LiBr-H2O [2, 3, 4]. There is also 

interest in modelling and simulation of adsorption heat 

pumps, which allows the analysis of the winter cycle 

of the combined systems [5]. The adsorption 

technology is also frequently the subject of scientific 

investigation [6, 7, 8, 9, 10, 11]. The range of 

produced absorption or adsorption units is from 8 kW 

up to 21 MW cooling capacity. The choice of 
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adsorption or absorption technology depends on load, 

price, and most of all temperature of the heat source 

for desorber heating [12]. The COP of the absorption 

cycle, with high-temperature generation (above 

120°C), using two-stage, double effect cycle, may be 

higher than for adsorption. For lower temperature 

sources such as solar cooling or central heating 

network, the application of absorption may not be 

possible at all. The different heat sources for cooling 

or refrigerating have been also analyzed in several 

published papers [13, 14, 15, 16]. The adsorption 

technology makes it possible to apply 65°C heat 

source for desorber [17, 18]. This is the main 

difference between the possibilities of contemporary 

industrial adsorption and absorption technologies. 

There is also scientific interest in hybrid sorption-

compression cycles, however with other assumed aims 

and refrigerants than presented here [19, 20, 21, 22].  

2. EXPERIMENTAL METHODOLOGY 

In the Laboratory of Thermodynamics and 

Thermal Machines Measurements (Cracow University 

of Technology), the set-up with hybrid refrigerating 

compression/adsorption system was built in 2013 

(Figs. 1,2,3,4,5) [23]. At the high temperature (HT) 

stage an adsorption system (ADS_L1) [24] coupled 

with tube type solar collectors (SOLAR_L4) and wet 

cooling tower (TOWER_L5) is applied. The low-

temperature stage (CO2_L2) is equipped with two 

parallel CO2 compressors.  

One of the compressors is controlled by a variable 

frequency drive, both working in a cascade regime. 

A secondary fluid: ethylene glycol for solar collectors 

and transportation of heat, from low to high-

temperature cycle is applied. The thermal fluxes 

between subsystems are presented in Fig. 1. 

 

Fig. 1. Schematic diagram of a test setup 

 

Fig. 2. Logical scheme of the hybrid system. SOLAR_L4 – solar collectors, ADS_L1- adsorption unit, CO2_L2 – LT 
compression stage, TOWER_L5 – wet cooling tower, CHB_L3 – heat accumulator, LT – low-temperature heat supply, 
MT – medium temperature heat for desorption system cooling, HT – high-temperature heat 
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The main advantage of the hybrid cycle is that the 

carbon dioxide compression cycle is subcritical 

because during the whole year operation it is possible 

to maintain the condensing temperature below 20°C. 

During the hot season, this is achieved by adsorption 

cooling, during cold seasons the wet cooling tower 

(Fig. 4) is sufficient.  

This type of hybrid system requires a considerable 

amount of power for cooling tower fans. Therefore it 

is very important to control the fans of the wet cooling 

tower using frequency inverter. Already several years 

of experience, allowed to gather a considerable 

amount of measurement data. In this paper 

summarized results for heat transfer between system 

elements are shown. In Fig. 2 the logical schematic of 

the system is presented. Heat transfer between 

elements is denoted with subscribed arrows. The names 

of heat streams are denoted as subscripts in Figs 9, 11. 

During our tests, all necessary temperatures and 

pressures were measured and then refrigerant and 

liquid enthalpy were calculated using NIST 

REFPROP. The mass flow rate or volumetric flow rate 

were also measured, as well as the power consumption 

of all devices including fans, compressors, pumps, and 

all control equipment. Ambient air parameters were 

also registered. 

 

Fig. 3. Adsorption cycle main unit 

 

Fig. 4. Wet cooling tower 

 

Fig. 5. CO2 compressors with controls 

 

Fig. 6. Solar collectors 

The refrigeration system (Fig. 1, 2, 3, 4, 5, 6) is 

operating in our laboratory constantly since 2013. In 

2015 the adsorption system was upgraded by the 

manufacturer (SORTECH eCoo Fig. 3). Since 2017 

fan in the cooling tower is controlled by the frequency 

inverter. The refrigeration chamber was used for tests 

with different content and operation (loading and 

unloading). The CO2 evaporating temperature was 

mostly -35°C. In Fig. 9 solar heat flux recovery by 

solar collectors for averaged day-in-month in 2018 is 

presented.  
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Highest values of acquired solar heat flux are for 

May and August, lowest for December, September, 

and February in 2018. This, however, does not mean 

that solar heat gain, in case of the hybrid system, can 

be transformed directly into the cooling power of the 

adsorption system. 

The COP of the adsorption system depends 

significantly on the temperature and humidity of the 

ambient air and the amount of heat removed by the 

cooling tower. It is presented in Figs 9, 11. 

In Fig. 10 an example characteristics of a wet 

cooling tower is presented. These functions were 

averaged from the results of the experimental tests. 

Usually, this power is neglected in the literature, while 

analyzing cycle COP. However, in the real working 

conditions total COP of a system shall include as 

energy loss also a power supply for cooling fans and 

pumps. Therefore frequency inverters for the tower 

fan and pump were introduced and function shown in 

Fig. 10 were used for system control. 

The measurement system used in the facility is 

described in table 1. 

Tab. 1. Measuring equipment installed in the refrigeration 
adsorption-compression hybrid system 

Sensor Class Usefull range 

Introl IT-CF-1 
Pt100 

B 
-25~200; -50~150; 
0~150°C 

Introl 0.03% 4~20 mA 

SIEMENS 
MASSFLO 2100 

0.01% 0~1000 kg/h 

SIEMENS MASS 
6000 

0.01% 0.0002~0.2786 kg/s 

Hoffer Flow 
Controls ACEII 

0.05% 10~110 l/min 

Hoffer Flow 
Controls 

0.05% 
4.73~35.96; 
6.62~60.57; 
9.46~109.78 l/min 

KEP 
BATRTM2AC 

0.05% 
0~36; 0~60; 0~110 
l/min 

Vegabar 17 0.05% 0~100 bar 

Vegabar 17 0.05% 0~25 bar 

LUMEL 0.01% 

0~200; 0~700; 
0~3000; 0~8000; 
0~10000; 0~15000 
W 

 

 

Fig. 7. The adsorption cycle COP for 16°C water inlet 

 

Fig. 8. The adsorption cycle COP for 13°C water inlet 

 

Fig. 9. Solar heat recovery in 2018 for an averaged day in 
a month 

 

Fig. 10. Heat flux in the cooling tower related to the fan 
revolution speed/power 
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Fig. 11. Daily heat transfer in the heat exchangers 

3. PERFORMANCE RESULTS 

In Fig. 11 heat transfer energy between 

subsystems denoted in Fig. 2 during the average day 

(24 hours) in 12 months is presented. Useable heat 

transfer QLT values shown in Fig. 11 are lower in hot 

days than expected because of higher MT ambient 

temperature, which is a significant factor for 

adsorption cycle COP (Figs. 7.8). The adsorption 

system was not used for CO2 condenser cooling in the 

period of 1.01-31.03.2018 and 1.10.2018-31.12.2018. 

During this time the cooling tower was sufficient for 

the direct CO2 condenser cooling. The thermodynamic 

efficiency of the system may be estimated using the 

COP (Coefficient of Performance). Thermodynamic 

analysis always denotes efficiency as the achieved 

energy result divided by the energy cost. This seems 

obvious but in case of hybrid systems powered 

partially by renewables, this definition does not reflect 

the real thermodynamical efficiency. The COP for 

adsorption system used for cooling is defined 

traditionally as: 

 ����� �
�	
��

��

, (1) 

where: Qcond – heat energy removed from the low-

temperature source (in this case evaporator CO2, QHT – 

heat for adsorption generator 

The COP for all year according to formula (1) is 

0.51. This number is consistent with the producer’s 

data [24], higher than expected for long-time operation. 

For the compression, refrigeration cycle COP is 

defined as: 

 ��� �
��

����

�	
���

, (1) 

where: Qevap – CO2 evaporation heat, Ncompr – 

compressors power. 

In the case of two stages, compression-only cycle 

equation (2) is also valid. 

Total COP=0.9 for this system was calculated 

using whole year values of heat and power. For similar 

conditions, the compression-only cascade COP=0.84. 

Those results, however, neglect in both cases power 

supply for auxiliary systems (pumps, fans and control 

devices), which in the case of a hybrid cascade is 

higher. For the compression cascade, TEWI index is 

60% higher than hybrid cascade [23]. 

4. CONCLUSIONS 

The averaged for HT part of the cascade 

(adsorption cycle only) COPHT=0.51 for the whole 

year 2018. This may be considered very good 

performance for adsorption system powered by 

waste/renewable heat. This means that about half of 

the total solar energy acquired by solar collectors was 

used. Calculated from yearly averaged energy 

transfers total COP for the cascade system was 

COP=0.9. For double stage compression-only 

refrigeration cascade for similar conditions calculated 

COP=0.84. For comparison for two-stage compression 

(R407CHT+R744LT) cycle with higher TEWI index 

was used.  

The cooling tower fan operation is controlled 

using inverter adjusted to the actual heat removal 

demand. This allows for significant electric power 

requirement reduction for the system. 

During the cold season, the adsorption cycle may 

work as a heat pump because CO2 condenser was 

cooled directly by the cooling tower. This means also 

that the solar system is not utilized as an energy source 

for the CO2 compression system and become a heat 

source for the heat pump. In this case, three heat 
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sources for a heat pump is used: solar collectors, 

condenser and compressor cooling, ambient air as 

a low-temperature heat source for a heat pump. This 

solution increases total Renewable Energy Source 

(RES) usage for the whole year. 
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