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Abstract: In the present work optimization of cutting parameters is performed while hard turning 

of AISI 52100 steel with polycrystalline cubic boron nitride (PCBN) tools using Technique for 

Order Preference by Similarity to Ideal Solution (TOPSIS). Experiments are planned and 

conducted based on Center Composite Rotatable Design (CCD) of the Response Surface Method 

(RSM). Cutting speed, feed, depth of cut, nose radius and negative rake angle are considered as 

input parameters. In this study machining force (F) and surface roughness (Ra) are measured 

during the experiment. Analysis of variance (ANOVA) is deployed to determine the influence of 

process parameters. Obtained optimal parameters are speed 200 rpm, feed 0.1 mm/rev, depth of 

cut 0.8 mm, nose radius 1.2 mm and negative rake angle 45º. 

 Keywords: machining force, surface roughness, TOPSIS, optimization 

 

1. INTRODUCTION 

Hard turning evolved as an improved machining 

process incontrast to grinding due to numerous merits 

such as process flexibility, economic, less setup time, 

complex parts fabrication and absence of coolant 

[1-2]. AISI 52100 steel was widely accepted material 

for abundant applications such as bearings, rollers, and 

dies etc and the turning process was inevitable for the 

aforementioned applications. Optimal process 

parameters selection was essential for higher-order 

machining performance, Multi criteria decision 

making methods (MCDM) were proved as tools in 

several manufacturing applications [3]. Among many 

TOPSIS method was adopted and gained acceptance 

for optimizing machining parameters [4]. 

Himadri Majumder and Abhijit Saha [5] optimized 

process parameters in turning of ASTM A588 mild 

steel using a hybrid optimization tool i.e. MOORA-

PCA and TOPSIS-PCA approach. Tian [6] used 

TOPSIS (Technique for Order Preference by 

Similarity to Ideal Solution) for optimization of input 

parameters in CNC machining of S45C steel. 

Palanisamy and Senthil [7] carried out of process 

parameters optimization in turning of 15-5 PH 

stainless steel using Taguchi based Grey approach and 

TOPSIS. It is concluded that force and surface 

roughness are predominantly affected by feed rate.  

Maheswararao and Venkata subbaiah [8] 

employed TOPSIS for optimization of process 

parameters in the CNC machining of AA7075. Results 

concluded that feed rate has a significant influence on 

responses. Sagar Bhise et al. [9] studied the effect of 

input parameters on surface roughness in hard turning 

of M42 austenitic stainless steel using CBN and 

carbide inserts by deploying PCR-TOPSIS. Maity and 

Khan [10] determined an optimal combination of 

process parameters during turning of commercially 

pure titanium (CP-Ti) grade 2 using the MCDM-based 

TOPSIS method. 
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Singaravel et al. [11] optimized machining 

parameters and nose radius in turning of EN25 steel by 

the application of combined MOORA and entropy 

measurement method. Singaravel et al. [12] 

determined optimum process parameters using the 

Additive Ratio Assessment (ARAS) method in turning 

of AISI 4340 steel. Optimization of process 

parameters is performed using various techniques like 

GRA-PCA [13-15], GA [16], ANN [17], TOPSIS 

[18-19]. Hence, the present work aimed to optimize 

process parameters for AISI 52100 steel hard turning 

using TOPSIS. 

2. EXPERIMENTAL DETAILS 

 

Machining details and experimental matrix with 

responses are shown in Table 1 and Table 2 

respectively. The experimental setup is depicted in 

Figure 1. In the current study, Kirloskar Turn Master-

35 type lathe was employed for conducting 

experiments in dry condition and AISI 52100 steel 

was deployed as a workpiece having a diameter of 48 

mm and length of 500 mm. For this experimentation, 

five process variables are chosen such as Cutting 

Speed, Feed, Depth of cut, Nose radius, and Negative 

rake angles. PCBN tools with designation (CNMG 

120404, CNMG 120406, CNMG 120408, CNMG 

120410, CNMG 120412) manufactured by Zen 

Diamond Tools, Chennai, India are depicted in Figure 2. 

Tab. 1 Machining Conditions 

Designation Notation 
Adopted for the present 
study 

Workpiece 
material 

 AISI 52100 steel 

Dimensions  
48 mm diameter and 500 mm 
length 

Hardness  57 HRC 

Cutting speed 
(rpm) 

ν 200, 400, 600, 800, 1000 rpm 

Feed 
(mm/rev) 

f 
0.02, 0.04, 0.06, 0.08, 0.1 
mm/rev 

Depth of cut 
(mm) 

d 0.4, 0.5, 0.6, 0.7, 0.8 mm 

Nose radius r 0.4, 0.6, 0.8, 1, 1.2 mm 

Negative rake 
angle  

α 5, 15, 25,35,45 

Cutting 
environment 

 Dry 

Cutting 
inserts  

 
Polycrystalline cubic  
boron nitride (PCBN) 

Tool holder  PSBNR 2525 M12 

Tool 
geometry 

 
CNMG120404, CNMG120406, 
CNMG120410, CNMG120412 

Machining 
length 

 30 mm 

Responses 
Fm 

Ra 

Machining force,  
Arithmetic mean roughness 

 

.  

Fig. 1. Experimental setup 

 

Fig. 2.  PCBN tools 

3. TECHNIQUE FOR ORDER OF 

PREFERENCE BY SIMILARITY TO 

IDEAL SOLUTION (TOPSIS) 

TOPSIS (Technique for Order Preference by 

Similarity to Ideal Solution) was developed by Hwang 

and Yoon based on the concept that the chosen 

parameter should have the shortest distance from the 

best solution and the longest distance from the worst 

solution [20]. Normalized and weighted normalised 

values are shown in Table 3. Positive ideal, Negative 

ideal solutions, separation measures, closeness 

coefficient values, and rank are given in Table 4. 

3.1. Step 1 
The normalized value (rij) is obtained using the 

equation (1). 

 .3,2,1j;32......3,2,1i
X

X

m
1i

2
ij

ij

ij
r ==

∑

=
=

 (1) 

3.2. Step 2 
By multiplying the normalized value with related 

weights the weighted normalized value (vij) is 

calculated and is shown in equation (2), 

 vij =wj * rij i= 1,2,3…32; j=1,2,3. (2) 
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3.3. Step 3 
Then the positive ideal solution (S+) and negative 

ideal solution (S-) calculated using equation (3), 

S+ = {(Max (vij) | j ∈ J), (Min (vij) | j ∈ J′) | i=1,2…32} 

S- = {(Min (vij) | j ∈ J), (Max (vij) | j ∈ J′) | i=1,2…32}
(3)

 

3.4. Step 4 
The separation of each alternative from positive 

ideal solution (S+) and negative ideal solution (S-) is 

found as per equation (4) and equation (5), 

 ( )∑ =
+

−
+ = 32

1

2

i jiji svD  i = 1,2 …32, (4) 

 ( )∑ =
−

−
− =

32

1

2

i
jiji svD  j= 1,2,3. (5) 

3.5. Step 5 
The closeness coefficient value of each alternative 

(Ci) is calculated using equation (6), 

 .
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D
C

ii

i
i +−

−

+
=  (6) 

Tab. 2 Experimental matrix with responses 

Exp. 
No 

ν 

 
f 

 
d 

(mm) 
r 

(mm) 
α 

(º) 
Fm 

(N) 
Ra 

(µm) 

1 400 0.04 0.5 0.6 35 404.7 0.52 
2 800 0.04 0.5 0.6 15 233.4 0.46 
3 400 0.08 0.5 0.6 15 322.1 0.45 
4 800 0.08 0.5 0.6 35 473.0 0.54 
5 400 0.04 0.7 0.6 15 317.4 0.55 
6 800 0.04 0.7 0.6 35 376.3 0.50 
7 400 0.08 0.7 0.6 35 583.0 0.53 
8 800 0.08 0.7 0.6 15 380.4 0.47 
9 400 0.04 0.5 1 15 273.5 0.48 

10 800 0.04 0.5 1 35 425.4 0.40 
11 400 0.08 0.5 1 35 561.1 0.50 
12 800 0.08 0.5 1 15 350.2 0.50 
13 400 0.04 0.7 1 35 443.7 0.50 
14 800 0.04 0.7 1 15 323.6 0.40 
15 400 0.08 0.7 1 15 411.7 0.60 
16 800 0.08 0.7 1 35 523.3 0.49 
17 200 0.06 0.6 0.8 25 430.8 0.55 
18 1000 0.06 0.6 0.8 25 355.4 0.45 
19 600 0.02 0.6 0.8 25 309.5 0.46 
20 600 0.1 0.6 0.8 25 534.4 0.53 
21 600 0.06 0.4 0.8 25 344.4 0.45 
22 600 0.06 0.8 0.8 25 449.2 0.48 
23 600 0.06 0.6 0.4 25 359.3 0.51 
24 600 0.06 0.6 1.2 25 446.2 0.48 
25 600 0.06 0.6 0.8 5 279.9 0.48 
26 600 0.06 0.6 0.8 45 601.2 0.50 
27 600 0.06 0.6 0.8 25 358.5 0.50 
28 600 0.06 0.6 0.8 25 370.7 0.51 
29 600 0.06 0.6 0.8 25 378.5 0.52 
30 600 0.06 0.6 0.8 25 403.9 0.51 
31 600 0.06 0.6 0.8 25 380.2 0.48 
32 600 0.06 0.6 0.8 25 370.6 0.52 

 

Tab. 3 Normalized and weighted normalised value 

Exp. 
No 

Normalized value 
Weighted Normalized 

value 
Machining 

Force 
Surface 

Roughness 
Machining 

Force 
Surface 

Roughness 

1 0.17501 0.18532 0.08750 0.09266 

2 0.10095 0.16414 0.05047 0.08207 

3 0.13928 0.15991 0.06964 0.07995 

4 0.20454 0.19238 0.10227 0.09619 

5 0.13728 0.19486 0.06864 0.09743 

6 0.16275 0.17897 0.08137 0.08948 

7 0.25211 0.19027 0.12605 0.09513 

8 0.16449 0.16626 0.08224 0.08313 

9 0.11830 0.17120 0.05915 0.08560 

10 0.18397 0.14155 0.09198 0.07077 

11 0.24265 0.17897 0.12132 0.08948 

12 0.15146 0.17720 0.07573 0.08860 

13 0.19189 0.17932 0.09594 0.08966 

14 0.13993 0.14402 0.06996 0.07201 

15 0.17806 0.21321 0.08903 0.10660 

16 0.22631 0.17579 0.11315 0.08789 

17 0.18629 0.19733 0.09314 0.09866 

18 0.15369 0.16097 0.07684 0.08048 

19 0.13387 0.16520 0.06693 0.08260 

20 0.23111 0.18709 0.11555 0.09354 

21 0.14893 0.15885 0.07446 0.07942 

22 0.19424 0.16944 0.09712 0.08472 

23 0.15540 0.18144 0.07770 0.09072 

24 0.19295 0.17120 0.09647 0.08560 

25 0.12105 0.17085 0.06052 0.08542 

26 0.26000 0.17968 0.13000 0.08984 

27 0.15503 0.17897 0.07751 0.08948 

28 0.16031 0.18285 0.08015 0.09142 

29 0.16367 0.18356 0.08183 0.09178 

30 0.17468 0.18073 0.08734 0.09036 

31 0.16442 0.17226 0.08221 0.08613 

32 0.16027 0.18426 0.08013 0.09213 
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Fig. 3. Main effects plot 
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Tab. 4 Separation measures, Closeness coefficient values 
and rank 

Exp. 
No 

PIS NIS Di
+ Di

- Ci Rank 

1 0.08 0.09 0.04 0.04 0.490 12 

2 0.05 0.08 0.08 0.01 0.119 32 

3 0.07 0.08 0.06 0.02 0.244 27 

4 0.10 0.09 0.03 0.05 0.661 6 

5 0.06 0.09 0.06 0.03 0.342 24 

6 0.08 0.08 0.05 0.03 0.412 17 

7 0.12 0.09 0.01 0.07 0.867 1 

8 0.08 0.08 0.05 0.03 0.390 20 

9 0.05 0.08 0.07 0.01 0.189 31 

10 0.09 0.07 0.05 0.04 0.443 14 

11 0.12 0.08 0.01 0.07 0.792 3 

12 0.07 0.08 0.05 0.03 0.351 23 

13 0.09 0.09 0.03 0.04 0.564 8 

14 0.07 0.07 0.06 0.02 0.220 29 

15 0.08 0.10 0.04 0.05 0.562 9 

16 0.11 0.08 0.02 0.06 0.721 5 

17 0.09 0.09 0.03 0.05 0.575 7 

18 0.07 0.08 0.05 0.02 0.322 25 

19 0.06 0.08 0.06 0.02 0.231 28 

20 0.11 0.09 0.01 0.06 0.780 4 

21 0.07 0.07 0.06 0.02 0.292 26 

22 0.09 0.08 0.03 0.04 0.552 10 

23 0.07 0.09 0.05 0.03 0.382 21 

24 0.09 0.08 0.04 0.04 0.550 11 

25 0.06 0.08 0.07 0.01 0.197 30 

26 0.13 0.09 0.01 0.08 0.830 2 

27 0.07 0.08 0.05 0.03 0.373 22 

28 0.08 0.09 0.05 0.03 0.410 18 

29 0.08 0.09 0.05 0.03 0.428 15 

30 0.08 0.09 0.04 0.04 0.478 13 

31 0.08 0.08 0.05 0.03 0.404 19 

32 0.08 0.09 0.05 0.03 0.413 16 

  

Tab. 5 Mean response table for Closeness Coefficient 

Level Factor 

 ν f d r α 

1 0.5748 0.2309 0.292 0.3817 0.1965 

2 0.5063 0.3473 0.41109 0.4407 0.3021 

3 0.4513 0.4431 0.45509 0.4488 0.4420 

4 0.4146 0.5735 0.5098 0.4802 0.6188 

5 0.3217 0.77977 0.5521 0.54988 0.8299 

Max-Min 0.2530 
 

0.5488 
 

0.2601 
 

0.1681 
 

0.6334 

Rank 4 2 3 5 1 

4. RESULTS AND DISCUSSION 

The higher the value of closeness coefficient 

indicates better performance. From Table 4, it is 

evident that the experiment number 7 having the 

highest value of closeness coefficient was the better 

performer amongst the 32 number of experiments.  

The order of the experimental run obtained by 

TOPSIS was given by 7>26>11>20>16>4>17> 

13>15>22>24>1>30>10>29>32>6>28>31>8>23>27>

12>5>18>21>3>19>14>25>9>2. 

Optimum closeness coefficients are observed 

(Shown in Fig.3.) at ν = 200 rpm, f = 0.1 mm/rev, d = 

0.8 mm, r = 1.2 mm and α = 45º and similar 

observations are made from mean response table for 

closeness coefficient shown in Table 5. 

Tab. 6 ANOVA for Closeness Coefficient 

Source DF Seq SS 
Adj 
SS 

Adj 
MS 

F P 
% 
C 

ν 1 0.064 0.003 0.003 1.8 0.19 5.36 

f 1 0.352 0.007 0.007 4.3 0.06 29.48 

d 1 0.072 0.009 0.009 5.8 0.03 5.99 

r 1 0.018 0.000 0.000 0.0 0.79 1.48 

α 1 0.602 0.009 0.009 5.5 0.03 50.36 

ν*ν 1 0.000 0.000 0.000 0.2 0.65 0.00 

ν*f 1 0.000 0.000 0.000 0.09 0.76 0.01 

ν*d 1 0.013 0.013 0.013 8.2 0.015 1.07 

ν*r 1 0.000 0.000 0.000 0.01 0.93 0.00 

ν*α 1 0.003 0.003 0.003 1.9 0.18 0.26 

f*f 1 0.008 0.009 0.009 5.8 0.03 0.63 

f*d 1 0.002 0.002 0.002 1.5 0.23 0.20 

f*r 1 0.003 0.003 0.003 1.8 0.20 0.24 

f*α 1 0.064 0.003 0.003 8.3 0.01 1.08 

d*d 1 0.352 0.007 0.007 0.2 0.66 0.07 

d*r 1 0.072 0.009 0.009 1.7 0.21 0.22 

d*α 1 0.018 0.000 0.000 7.5 0.01 0.99 

r*r 1 0.602 0.009 0.009 1.1 0.31 0.09 

r*α 1 0.000 0.000 0.000 0.7 0.40 0.10 

α*α 1 0.000 0.000 0.000 7.2 0.02 0.94 

Error 11 0.013 0.013 0.013   1.43 

Total 31 1.194      

S = 0.0394242 R-Sq = 98.57% R-Sq(adj) = 95.97% 

 

In the response table (Table 5) it has shown that 

a negative rake angle has been assigned a rank 1 

which means it is the most significant parameter in 

controlling the response followed by feed, depth of 

cut, cutting speed and nose radius. 

From the ANOVA table 6, it is clear that the 

negative rake angle (50.36%) has significant influence 

followed by feed (29.47%), Depth of cut (5.98%), 

speed (5.36%) and nose radius (1.48%) has least 

influence. 

The Closeness coefficient for the obtained 

optimum combination of parameters was 1.463687 

estimated from equation 7 and was 68.73% higher 

than the maximum Closeness coefficient 

corresponding to rank 1 in Table 4. Hence the values 

obtained are optimum. 

 .)(
q

1i
mjm ∑ γ−γ+γ=γ

=
 (7) 
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5. CONCLUSIONS 

Experiments were conducted as per CCD of RSM 

and optimized cutting parameters in AISI 52100 steel 

hard turning using TOPSIS. 

1. The negative rake angle is the most significant 

parameter in controlling the response followed by 

feed, depth of cut, cutting speed and nose radius. 

2. From the ANOVA negative rake angle (50.36%) 

has significant influence followed by feed 

(29.47%), Depth of cut (5.98%), Speed (5.36%) 

and Nose radius (1.48%) has least influence. 

3. It is clear from the results of TOPSIS experiment 

number 7 has the highest closeness coefficient 

value. Optimal parametric combinations are at 

speed 200 rpm, feed 0.1 mm/rev, depth of cut 0.8 

mm, nose radius 1.2 mm and negative rake angle 45°. 

4. From the values of closeness coefficient, the 

machining parameters best combination can be 

arranged in the order 7>26>11>20>16>4>17>13> 

15>22>24>1>30>10>29>32>6>28>31>8>23>27>

12>5>18>21>3>19>14>25>9>2. 

5. An improvement of 68.73% of the predicted 

weighted closeness coefficient establishes the 

optimality of obtained results.  
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Nomenclature 

Symbols 

f – Feed, mm/rev 

d – Depth of cut, mm 

r – Nose radius, mm 

Fm – Machining force, N 

Ra – Arithmetic mean roughness, µm 

Ci – Closeness coefficient 

Greek letters 

ν – cutting speed, rpm  

α – Negative rake angle, (°) 

Acronyms 

CCD – Central composite design 

PCBN – Polycrystalline Cubic Boron Nitride 

AISI – American Iron and Steel Institute 

RSM – Response surface Method 

TOPSIS – technique for order of preference by similarity 

to ideal solution 

ANOVA – Analysis of Variance 

PIS – Positive ideal Solution 

NIS – Negative ideal Solution 

GRA – Grey relational approach 

PCA – Principle component analysis 

MCDM – Multi criteria decision making 

ANN – Artificial neural network 

DF – Degrees of freedom 
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