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Abstract: Minimum Production Time model of the machining process optimization problem 

comprising seven lathe machining operations were developed using Genetic Algorithms solution 

method. The various cost and time components involved in the minimum production cost and 

minimum production time criteria respectively, as well as all relevant technological/practical 

constraints were determined. An interactive, user-friendly computer package was then developed 

in Microsoft Visual Basic.Net environment to implement the developed models. The package was 

used to determine optimal machining parameters of cutting speed, feed rate and depth of cut for 

the seven machining operations with twenty-three technological constraints in the conversion of 

a cylindrical metal bar stock into a finished machined profile. The result of the single-objective 

machining process optimization models shows that the minimum production time is 21.84 min. 
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1. INTRODUCTION 

Taylor first realized the importance of machining 

optimization [1] in his pioneering work “On the Art of 

Cutting Metals”. Since then, optimization of 

machining processes remains an ongoing activity, as 

evidenced by the optimization studies that were 

carried out over the last century [2]. In machining 

process optimization criteria are usually based on three 

objectives of: the minimum total cost per component; 

the maximum production rate; and the maximum 

profit-rate criterion [3-5]. 

Selection of cutting parameters is usually 

a difficult task, where the following aspects are 

required: knowledge of machining; empirical 

equations relating the tool life, forces, power, surface 

finish, etc., to develop realistic constraints; 

specification of machine tool capabilities; 

development of an effective optimization criterion; 

and knowledge of mathematical and numerical 

optimization techniques [6, 7]. 

Several optimization techniques have been 

employed for machining process optimization since 

the introduction of computers to machining systems.  

Linear programming was used for machining 

process optimization [8-10] developed a Nelder-Mead 

simplex method to determine the optimum machining 

conditions. In most of the works above, the problems 

were simplified by considering only one or two 

variables such as the cutting speed and feed rate, in 

order to optimize the economical machining 

performance. They assumed that a single cut can 

achieve the required maximum metal removal rate 

(MRR). 

Geometric Programming (GP), one of the non-

linear optimization techniques, has been extensively 

adopted [11], in which the constrained models are 

converted into a dual geometric programming 

formulation and then into an unconstrained nonlinear 

programming formulation. 

Traditional non-linear optimization techniques 

have also been extensively used. Wen et al [12] 

adopted the successive quadratic programming method 

to solve the non-linear off-line optimization scheme 

for a surface grinding process. Xiao et al [13] applied 

an iterative Newton’s method for a non-linear internal 

cylindrical plunge grinding process. Jha and Hornik 

[14] used the generalized reduced gradient method to 
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optimize the tool geometry and cutting conditions in 

plain milling process.  

Sonmez and Baykasoglu [6] outlined the 

development of an optimization strategy to determine 

the optimum cutting parameters for multi-pass milling 

operations such as plain milling. The developed 

strategy was based on the maximum production rate 

and incorporated eight technological constraints. The 

optimum number of passes was determined via 

dynamic programming and the optimum values of 

cutting conditions were found based on the objective 

function by using the geometric programming 

technique. Jang [15] developed a unified optimization 

approach for the selection of the machining parameters 

(cutting speed, feed, and depth of cut) to provide the 

maximum metal removal rate. Ermer [16] analyzed 

a nonlinear objective function with inequality 

constraints to determine the optimal machining 

conditions by geometric programming. Lambert and 

Walvekar [17] developed a dynamic  

programming model for the multi-pass turning 

operation under constraints of force, cutting power and 

surface finish to determine values of machining 

variables and minimum production cost. They 

considered two-pass turning operations. Shin and Joo 

[18] presented a model for the multi-pass turning 

operation using a fixed machining interval. They used 

dynamic programming for the selection of depth of cut 

for individual passes. The final finish pass was fixed 

based on the minimum allowable depth of cut and the 

remaining depth of cut was divided into a number of 

rough passes of equal sizes to obtain the minimum 

total cost. Lee et al [19] developed a fuzzy non-linear 

programming model to optimize machining 

operations. The model was used to select the tool-

holder, insert and cutting conditions (feed, speed and 

depth of cut). They used dynamic programming to 

select optimal cutting conditions. 

The traditional non-linear optimization techniques 

are mostly gradient-based and possess many 

limitations in application to today’s complex 

machining models. Secondly, they cannot deal with 

integer/discrete design variables directly; integer 

design variables have to be approximated from 

continuous values. Therefore, one must resort to non-

systematic optimization techniques, such as 

Evolutionary Algorithm. 

Groover [20] used Monte Carlo simulation to 

study the machining economic problem considering 

tool wear and surface roughness. Dereli et al [21] 

explained the application of Genetic Algorithms 

(GAs) for determination of optimal sequence of 

machining operations based on either minimum tool 

change or minimum tool traveling distance or safety. 

Srikanth and Kamala [22] applied a Real Coded 

Genetic Algorithm (RCGA) to determine minimum 

surface roughness values, and their corresponding 

optimum cutting parameters, for turning process. But 

they only considered four constraints. Saravanan et al 

[23] showed an optimization method for cutting 

conditions in continuous profile machining in order to 

minimize the production cost. For the optimization 

method, they used Genetic Algorithms (GAs) and 

Simulated Annealing (SA) and compared the results. 

Amiolemhen and Ibhadode [24] applied Genetic 

Algorithms (GAs) to determine the optimal machining 

parameters in the conversion of a cylindrical bar stock 

into a continuous finished profile using the minimum 

production cost criterion. They developed single and 

multi-pass models for seven machining processes 

involved in continuous prolife machining. 

Genetic Algorithms solution which has been used 

extensively in non-linear machining optimization 

problems [25-29], is the choice for this research work.  

Hence, this paper employs Genetic algorithms to 

determine the minimum production time in the 

conversion of cylindrical bar stock into a continuous 

finished part. A user friendly and iterative computer 

package developed in the Microsoft Visual Basic.Net 

environment is employed to determine the optimal 

machining parameters for machining a continuous 

finished profile from bar stock. 

2. METHODOLOGY 

2.1. Machining process optimization models 
Mathematical models have been developed for the 

following machining processes involved in the 

conversion of a cylindrical bar stock into a continuous 

finished part. These machining processes are: facing; 

turning; centreing; drilling; boring; chamfering; and 

parting. The models for the above machining 

operations are summarized in Table 1. The time model 

for each cutting operation is minimized subject to the 

constraints specified by the given equations. 

These equations are given below: 

 bounds on cuttings peed: 

 roughing: 
rU

r
rrL v

1000

DNπ
vv  , (1) 

 finishing: 
sU

s
ssL v

1000

DNπ
vv  , (2) 

 bounds on feed rate: 

 roughing: rUrrL fff  , (3) 

 finishing: 
sUssL fff  , (4) 

 bounds on depth of cut: 

 roughing: rUrrL ddd  , (5) 

 finishing: sUssL ddd  , (6) 
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 tool Life constraint: 

 roughing:
Uγ

r
β
r

α
r

o
rL T

dfv

C
TT  , (7) 

 finishing:
Uγ

s
β
s

α
s

o
sL T

dfv

c
TT  , (8) 

 cutting force constraint: 

 roughing: U
ν
r

μ
rfr FdfkF  , (9) 

 finishing: U
ν
s

μ
sfs FdfkF  , (10) 

 cutting power constraint: 

 roughing: 
U

r
ν
r

μ
rf

r P
η 000 60,

vdfk
P  , (11) 

 finishing: 
U

s
ν
s

μ
sf

s P
η 000 60,

vdfk
P  , (12) 

 chip-tool interface temperature constraint: 

 roughing: U
δ
r

φ
r

τ
rqr QdfvkQ  , (13) 

 finishing: 
U

δ
s

φ
s

τ
sqs QdfvkQ  , (14) 

 dimensional accuracy constraint: 

 roughing:
U

ψ
r

ς
r

χ
rgr DAdfvkDA  , (15) 

 finishing: 
U

ψ
s

ς
s

χ
sgs DAdfvkDA  , (16) 

 stable cutting region constraint: 

 roughing: SCdfvSC υ
rr

λ
rr  , (17) 

 finishing: SCdfvSC υ
ss

λ
ss  , (18) 

 surface finish constraint: 

 finishing:
U

2
s

s SR
8R

f
SR  , (19) 

 miscellaneous constraints: 

 Finishing cutting speed:
rs 1.2vv  , (20) 

 Finishing Feed rate: 
rs 0.6ff  , (21) 

 Finishing depth of cut:
rs d5.0d  , (22) 

 Total depth of cut constraint: ds = dt–n, (23) 

 bounds on number of rough cuts: 

 

rL

sLt
U

rU

sUt
L

d

dd
Nn

d

dd
N







. (24) 

 

Tab. 1. Multi-pass machining operations models 

S/n 
Machining 

operation 
Time functions Constraints 

1 Facing 

















































































r

t

rr

2

e

r

t
21c

r

t

rr

2

uf
d

d

f2000v

Dπ

T

t

d

d
h

2

D
ht

d

d

f2000v

Dπ
T

 1, 3, 5, 7, 9, 

11, 13 

2 Turning 

 

 

 

1 - 22 

3 Centreing    


















rr

e
21c

rr
uc

f1000v

DLπ

T

t
hLht

f1000v

DLπ
T

 1, 3, 5,7, 9, 

11, 13 

4 Drilling 
 

                                                                                                       

 
d

d
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πDL

T

t
 

d

d
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d

d

f1000v

πDL
T

2
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


 

1, 3, 5, 7, 9, 

11, 13 

5 Boring 
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T

1
N
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πDL
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1
t 1NhLht
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6 Parting   

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2.2. Optimization by Genetic Algorithms 

Outline of the Basic Genetic Algorithm 

1. [Start] Generate random population of n 

chromosomes (suitable solutions for the problem) 

2. [Fitness] Evaluate the fitness f(x) of each 

chromosome x in the population 

3. [New population] Create a new population by 

repeating the following steps until the new population 

is complete: 

 [Selection] Select two parent chromosomes from 

a population according to their fitness (the better 

fitness, the bigger chance to be selected); 

 [Crossover] With a crossover probability, Pc 

crossover the two parents to form two new 

offsprings (children). If no crossover was 

performed, offspring is the exact copy of parents;  

 [Mutation] With a mutation probability, Pm 

mutate new offsprings at each locus (position in 

chromosome); and 

 [Accepting] Place new offsprings in the new 

population. 

 [Replace] Use new generated population for 

a further run of the algorithm. 

 [Test] If the end condition is satisfied, stop, and 

return the best solution in current population. 

 [Loop] Go to step 2. 

2.3. The Genetic Algorithms procedure 

Generate initial population 

a. Determine population size 

The population size used in this work is, np = 20, 

in accordance with the recommendation of Schaffer [30]. 

b. Initialisation 

The solution space of the population size, np = 20 

is generated randomly between the bounds of each 

decision variable. In this work the decision variables 

are cutting speed, feed rate and depth of cut. 

I. Choosing solution representation 

The string of bits or genes in the chromosome 

could be binary, real integer number, etc [31]. In this 

work, binary string format of finite length was 

adopted. 

II. Determination of chromosome lengths 

The total length of each design variable 

represented in a binary string is determined as follows: 

 Choosing level of precision  

The level of precision or the number of decimal 

places of each decision variable, p = 4 was adopted. 

 Evaluate integer parameter of each decision 

variable 

The integer parameter is given as [31]: 

  p

jj 10abc 
 

where: p = level of precision or number of decimal 

places of the variable and (bj – aj) = range of 

domain of each of the variable.  

 Estimate of chromosome (binary string) length 

According to Gen and Cheng [31], if binary 

coding is used, the integer parameters of each 

variable always lie between: 

jj N1N
2c2 



 

where: Nj = length of chromosome (binary string) 

of each design variable  

III. Determination of the integer value of each 

chromosome 

The required integer value of each chromosome is 

determined as follows [31]:  

  12
ab

ax
x jN

jj

jj' 



















 

where: xj = the actual value of the decision variable, 

x’ = integer value of the binary number, aj = lower 

value of the range of the decision variable, and bj = 

upper value of the range of the decision variable. 

 

IV. Transformation of the integer values into 

binary strings 

The transformation of the integer values of the 

decision variables into binary strings is done as 

transformation of real numbers from base 10 to base 2 

as follows: 

{bN,bN-1, ..., b1} 

Evaluation of the initial population 

a. Determination of values of objective functions 

The values of the objective functions are 

determine by substituting feasible values of the 

decision variables into the various optimization 

models developed. 

Objective function value , i = 1, 2, 3... np 

b. Evaluation of fitness of each chromosome 

Since the objective function is a minimization 

problem, the fitness function of the ith solution is thus 

evaluated by: 

(x)g(x)g(x)f imaxi  , i = 1, 2, 3... np 

where: gmax (x) is the maximum objective function 

value and gi (x) is the objective function value of the ith 

solution. 

Creation of a new population 

After the transformation of the integer values into 

binary strings, Genetic Algorithms operators are 

applied. Here the three operators (reproduction, 

crossover, and mutation) are used. 
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a. Reproduction 

The two chromosomes (strings) with best fitness 

and the second best fitness are allowed to live and 

produce offspring in the next generation, after 

evaluation. These chromosomes are the “elites 

chromosomes”. 

b. Selection and crossover 

The cumulative probability is used to decide 

which chromosomes will be selected to crossover. The 

cumulative probability is calculated in the following 

steps: 

I. Selection of pairs of chromosomes for 

mating 

The Roulette wheel selection process was used 

selection and the cumulative probability, Cfi, is used to 

decide which parents will be selected for mating. And, 

the Roulette wheel is constructed as follows: 

Calculate fractional fitness (selection probability), 

Pfi, for each chromosome: 

(x)f

(x)f

talFitness_to

(x)f
Pf

pn

1i

i

ii
i






 

Calculate the cumulative fitness (probability), Cfi, 

for each chromosome: 

  np3... 2, 1, = i ,PfCf
i

1k

ii 




 

The selection process was done by spinning the 

Roulette wheel np times and each time, a single 

chromosome is selected for a new population, such 

that r  [0, 1], and if iCfr  , then select first 

chromosome; otherwise select the i th chromosome 

( pni2  ) such that i1i CfrCf  . 

II. Application of crossover operator to the 

selected pairs of chromosomes 

The crossover probability used is, Pc = 0.80. Then, 

a random number was generated such that, r  (0, 1); 

and if r < Pc, then crossover is carried out otherwise it 

is left unchanged.  

c. Application of mutation operator to the 

reproduced chromosomes 

Mutation alters one or more genes with 

a probability equal to the mutation rate (of the order of 

0.005 to 0.01). A random number is generated such 

that, r r < Pm, then that bit is 

complemented otherwise it is left unchanged. 

d. Formation of a new population 

After the mutation exercise, new strings are 

created which are then added to the two elite 

chromosomes from the initial population to form 

a new population. 

Evaluation of final population 

a. Decoding the newly formed population 

The newly formed chromosomes after the 

mutation operation are usually decoded as follows: 

 
12

ab
2bax

j

j

N

jj
N

1i

i

iji 

























 


 

b. Evaluation of objective function values 

The objective function values of the model being 

applied are determined using the newly formed 

population and then the results are checked for 

optimality. 

Termination method 

A new population is created as a result of 

completing one-iteration of the Genetic Algorithms. 

The iteration is terminated if optimum results are 

obtained; otherwise it is repeated until the maximum 

number of GA generation is reached [31]. 

In this work, the Genetic Algorithms procedure 

was terminated after 50 generations. 

2.4. Implementation 
The elements of the proposed models developed 

using Genetic Algorithm have been implemented in 

the software developed in Microsoft Visual Basic.Net 

environment and run on a Pentium 4 PC with 3.0 GHz 

Intel Processor and 2 GB of RAM. The values set for 

different parameters of the genetic algorithm are 

shown in Table 2. 

Tab. 2. Genetic Algorithms parameters 

Population size 20 

No of population generation 50 

Length chromosomes 49 

Selection operator Roulette Wheel 

Crossover operator One-point operator 

Crossover probability 0.80 

Mutation probability 0.01 

Fitness measure Single-obj. min 

 

2.5. Illustrative example 

An illustrative example has been adopted from 

[24], [29] to demonstrate the performance of the 

proposed models. Table 3 shows the data of the 

illustrative example. 
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Tab. 3. Data of Chen and Tseng [32] and Onwubolu and 

Kumalu [29] 

vrL = 90 m/min vrU = 500 m/min vsL = 90 m/min 

vsU = 500 m/min frL = 0.1 mm/rev   α = 5 

 = 0.40 fsL = 0.1mm/rev fsU = 1.0 mm/rev 

drL = 1.0 mm drU = 3.0 mm dsL = 1.0 mm 

 = 0.95  = 0.75 Ko = 0.5$/min 

Kt = 2.5 $/min TL = 25 min TU = 45min 

SRU = 10m ς = 0.9709 QU = 1000C 

h2 = 0.3 min FU = 5.0 kgf PU = 200 kW 

R = 1.2mm  = 0.85 C = 140 

Kf = 108 Kq = 132 dsU = 3.0 mm 

Φ = 0.2 h1 = 7x10-4 min/mm   Te = 1.5 min/edge 

 = 0.105 frU = 1.0 mm/rev β = 1.75 

Co = 6x1011 kr = 100.66 Χ = -0.2848 

Tc = 0.75 

min/piece 
ψ = 0.4905  = -1 

γ = 0.75  = 2  

 

3. RESULTS AND DISCUSSION 

Fig.1 contains the optimum results of the seven 

machining processes considered using the minimum 

production time model for the 50 population 

generations. This table also shows the optimum  

cutting parameters of the seven machining 

processes considered and the overall production time 

per workpiece. 

Fig. 2 shows the plots of maximum selection 

probability (fractional fitness) and corresponding 

minimum costs with respect to the number of 

generations. The fitness plot shows that the selection 

probability varies within the range of 0.063 – 0.119. 

The time plot shows that time of turning is about 9.9 

min/piece from the 1st to the 5th generations. It then 

drops to about 8.7 min/piece from the 6th generation 

and remains constant at this value to the 47th 

generation. Thereafter the cost drops to about 8.32 

min/piece from the 48th to the 50th generations. These 

plots show that in the neighbourhood of a drop in 

fractional fitness as the number of generations 

increase, there is a corresponding drop in the turning 

time. Between the 5th and 6th generations the 

fractional fitness drops from 0.095 to 0.071 when the 

time correspondingly drops from 9.9 min/piece to 

8.32 min/piece. Similarly between the 47th and 48th 

generations, the fractional fitness drops from 0.095 to 

0.070 while the production time correspondingly drops 

from 8.68 min/piece to 8.32 min/piece. These points of 

reduction in cost with respect to corresponding drops 

in fractional fitness relate to when the Genetic 

Algorithms solution is being reset by the crossover 

and mutation operators.  

Fig. 3 shows the plot of minimum production time 

for the seven machining operations carried out on the 

workpiece as given by Table 11. The Figure shows 

that the production time drops rapidly from 

38.02 min/piece from the 1st generation to 34.3 

min/piece at the 2nd generation and 34.1 min/piece 

from the 3rd generation to 24.7 min/piece at the 4th 

generation, and then to 22.8 min/piece at the 7th 

generation. The time drops between the 1st and the 7th 

generations represent a time slope of 1.586 

min/generation. Whereas that between the 7th 

generation (22.8 min/piece) to the 48th generation 

(28.1 min/piece) is 0.024 min/generation representing 

66 times the time slope between the 1st and 7th 

generations. This goes to show how effective the GAs 

solution technique is, in quickly converging to the 

optimum value. 

Table 4 shows the optimum cutting parameters 

and optimum machining time of the seven machining 

processes considered using the minimum production 

time model as well as the overall production time per 

workpiece.  

Using the data supplied by Ibhadode [33], the 

developed models gave production time for the 

monoplex die shown in Fig. 5 as 415.13 min. The 

details of these results are shown in Table 5.  

But, when the original Taylor’s tool life was 

replaced with the modified Taylor’s tool life, the 

production time became 360.25 min. These results are 

also shown in Table 5. Examination of the optimum 

solutions given in Table 5 has shown that for the two 

cases, the optimum production times for the monoplex 

die container are superior to the conventional 

recommended solutions (Ibhadode; 2009). While this 

was anticipated from the optimization analysis, it 

further confirms that the optimization models are 

reliable tools for application on the shop floor. 
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Fig. 2. Minimum unit production time for 50 generations 

 

Fig. 3. Plots of optimum fractional fitness and turning time against number of generations 
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Fig. 4. Time variation with generations for multi-pass turning 

Tab. 4. Optimum results obtained for the machining operations using the proposed models 

S/N 
Machining 

operation 

Cutting parameters Min. prod. 

Time 

(min/piece) vr (m/min) vs (m/min) fr (mm/rev) fs (mm/rev) dr (mm) ds (mm) 

1 facing 126.981 - 0.820 - 2.994 - 1.893 

2 turning 135.621 162.745 1.000 0.600 2.945 1.473 8.320 

3 centreing 141.252 - 1.000 
- 

2.000 - 0.304 

4 drilling 166.871 - 0.859 
- 

3.000 - 5.668 

5 boring 141.213 169.456 0.993 0.596 2.563 1.282 5.126 

6 Parting 166.702 - 1.000 
- 

2.654 - 0.228 

7 chamfering 128.44 - 1.000 
- 

2.750 - 0.302 

Total 21.841 

 

Tab. 5. Comparison of conventional method and the developed models 

S/N Machining process 
Production time using 

data from Ibhadode 

[33] (min) 

Production time using data from Ibhadode [33] 
and modified Taylor’s tool life used in the 

Production time model (min) 

1. Facing 64.48 10.55 

2. Centreing 1.52 0.19 

3. Drilling 4.88 0.62 

4. Boring 215.71 47.41 

5. Parting 64.26 10.16 

6. Chamfering 9.40 1.02 

Total 415.13 360.25 
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Fig. 5. Monoplex die [33] 

4. CONCLUSIONS 

Single-objective machining process optimization 

models were developed for seven machining processes 

involved in the production of a monoplex die 

container using the minimum production time model 

and subject to 22 technological constraints. The 

proposed model when implemented in Genetic 

Algorithms methodology gave an optimum production 

time of 21.84min/workpiece.  

The results show that the minimum production 

time models predict that turning, drilling and boring 

have the first, second and third highest production 

time components respectively, for the workpiece 

considered. Thus, the models suggest that turning, 

drilling and boring operations are very important 

operations which demand the most production 

resources for the workpiece under consideration. It is 

therefore very important to ensure that the optimum 

cutting parameters of cutting speed, feed rate and 

depth of cut are used as derived. 

The models also show that the operations of 

centering, parting and chamfering require the least 

production resources for the workpiece considered.  

A comparison of the models developed (in which 

the optimum cutting parameters are determined by 

applying GAs to the models) with the conventional 

method of using static cutting parameters showed that 

the models predict better production times. Thus, the 

models perform better than the conventional method. 

A robust Genetic Algorithms solution that is fast 

and efficient was developed and used to implement the 

optimization models. 
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Nomenclature 

Symbols 

Cfi  cumulative fitness of a population 

Co tool-life constant, dependent on cutting tool 

material/work-piece combination  

D diameter of work-piece (mm) 

DAr dimensional accuracy in roughing machining 

operation (mm) 

DAU limit of dimensional accuracy (mm) 

F {Fr, Fs}, cutting forces during rough and finishing 

machining (kgf) 

FU maximum allowable cutting force (kgf) 

L length of work-piece (mm) 

N {Nr, Ns}, spindle speeds for roughing and finishing 

machining (rpm) 

{NL, NU} lower and upper bounds of the number of rough cuts 

Nj  length of chromosome (binary string) of each design 

variable  

NP  nondeterministic polynomial  

Nrp number of rough passes 

P {Pr, Ps}, cutting powers during roughing and 

finishing machining (kW) 

Pfi  % fitness of each chromosome 

PU maximum allowable cutting power (kW) 

Q {Qr, Qs}, chip-tool interface temperature constraints 

for roughing and finishing machining (C) 

QU maximum allowable chip-tool interface temperature 

(C) 

R nose radius of cutting tool (mm) 

SCr stable cutting region for roughing machining 

SCs  stable cutting region for finishing machining 

SCU  limit of stable cutting region  

SRU maximum allowable surface roughness (m) 

T  {Tr, Ts}, expected tool-lives for roughing and 

finishing machining (min) 

TL, TU  lower and upper bounds for tool life for roughing 

and finishing machining (min) 

Ti machine idling time (min) 

Tm actual machining time (min) 

Tp tool life of weighted combination of Tr and Ts (min) 

bi  { bi-1 , bi-2,…….. b0 } binary string comprising genes 

d {dr, ds}, depth of cut in rough and finish machining 

operations (mm) 

dr  {drL, drU}, lower and upper bound of depth of cut in 

roughing machining (mm)  

drb depth of cut in roughing for boring (mm) 

drt depth of cut in roughing for straight turning (mm) 

ds {dsL, dsU}, lower and upper bound of depth of cut in 

finish machining (mm) 

dt depth of material to be removed (mm) 

f {fr, fs}, feed rates in roughing and finishing 

machining operations (rev/mm) 

fij the ith objective function value in the jth position of 

the current population 

fr  {frL, frU}, lower and upper bound of feed rate in 

roughing machining (rev/mm)  

fs  {fsL, fsU}, lower and upper bound of feed rate in 

finishing machining (rev/mm) 

gi  {i = 1, 2, …., J}, J numbers of inequality constraints  

h1 constant relating to tool travel and 

approach/departure time (min/mm)  

h2 constant relating to tool travel and 

approach/departure time (min)  
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hk  {k = 1, 2, …., K}, K numbers of equality constraints  

kf constant pertaining to a specific tool-workpiece 

combination for cutting force and cutting power  

kq constant pertaining to the constraint of chip-tool 

interface temperature 

kr constant pertaining to the constraint of dimensional 

accuracy 

l { lv , ld, lf }lengths of range of the variables of 

cutting speed, depth of cut and feed rate  

lr run back length (mm) 

m number of objective functions 

n number of rough cuts (an integer) 

nt an exponent that depends on cutting conditions 

np population size 

npb number of passes in roughing boring 

npt number of passes in roughing turning 

q {qv, qd, qf } levels of precision of the variables of 

cutting speed, depth of cut and feed rate  

r r  (0,1) random number 

tc constant term( due to loading and unloading 

operations) (min) 

te tool exchange time (min) 

v {vr, vs}, cutting speeds in rough and finish 

machining operations (m/min) 

vr {vrL, vrU}, lower and upper bound of cutting speed in 

rough machining (m/min) 

vs {vsL, vsU}, lower and upper bound of cutting speed in 

finish machining (rev/mm) 

x {x1 , x2} lower and upper values of the variables  

x' integer value of the corresponding random binary 

string 

z {zv , zd, zf}binary string lengths of the variables 

Greek letters 

α, β,  constants in the modified Taylor’s tool life equation 

relating to cutting speed, feed rate and depth of cut 

, ν constants relating to expression of cutting force and 

cutting power constraints 

η machine efficiency 

θ a weight for Tp [0,1] 

, υ constants relating to expression of stable cutting 

region constraint  

, φ, δ  constants relating to expression of chip-tool 

interface temperature constraint 

χ, ς, ψ  constants relating to the dimensional accuracy 

constraint  

Acronyms 

CNC Computer Numerical Control  

GAs Genetic Algorithms 
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