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Abstract: Heat pumps are an ideal solution for use in newly built passive and energy-plus 

buildings. One of the many problems present in such construction is the choice of the operational 

parameters of the lower heat source and the selection of a ground regeneration system which 

would enable effective regeneration in a short period of time and at a minimal cost. This article 

presents the heat analysis of the ground from which heat is obtained for heating purposes. The 

author also analyses ground heating, as the heat is delivered to it via regeneration systems. The 

presented in article results allow us to estimate the ground's thermal states based on lowered 

ambient temperature and the possible use of a lower heat pump source regeneration process. The 

original contribution in article is the calculation results of the ground behavior at the transient 

regeneration and heat consumption realized by the heat pump system.   
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1. INTRODUCTION 

Heat pumps are an ideal solution for use in newly 

built passive and energy-plus buildings. The paper [1] 

presents an Organic Rankine Cycle (ORC)-assisted 

with ground source heat pump for the utilization of 

low-grade energy and shallow geothermal energy in 

cold regions. During the heating season, the combined 

system is realized space heating process, and during 

the non-heating season, the ORC unit is connected to 

ground heat exchangers for seasonal storage. The 

paper [2] analyzes a new type of underground water 

source heat pump system, making the groundwater 

source heat pump system more efficient and energy 

saving. The application and performance of ground 

source heat pump (GSHP) systems in Jiangsu, China 

are reported in [3], and the experimental and 

theoretical methodologies are selected to investigate 

the operating performance of a ground heat exchanger 

made of polyethylene material which can face acid 

environment in [4]. The [5] paper shows the results of 

an invertible ground source heat pump (GSHP) with 

borehole heat exchangers. A minitype ground source 

heat pump (GSHP) system was presented in [6]. The 

ground heat exchanger consists of 9 vertical boreholes. 

Paper [6] reported that in winter conditions, the 

ground-coupled exchanger of the lower heat pump 

source has a tendency toward long-term ground 

freezing, especially if the heat exchange surface is not 

correctly selected. Paper [7] explains why the steady 

periodic temperature profile should be used for sizing 

ground heat exchanger for efficient operation of 

ground source heat pumps for longer periods of time. 

The work [8] has the objective of analyzing the 

potential of use of a municipal solid waste landfill for 

space heating through a heat pump with horizontal 

pipes. A dynamic model has been created in [8] for 

a real case study of a municipal solid waste landfill 

located in the north-east of Italy. The year-round 

performance of a ground source heat pump (GSHP) 

with multiple energy piles (EPs) is investigated in the 

[9] study based on a 3D transient heat transfer model. 

Subsurface shallow depth soil layer (SSDSL) is 

characterized by dynamic temperature changes, which 

may be eligible to constitute as a heat source for 

ground heat pumps. The [10] paper present the regime 

of heat flow in SSDSL and its climatic conditions in 

central Europe, taking into consideration the 

agriculture periphery characteristics of Wroclaw 

(Poland). The work [11]  evaluates the thermal 

behavior of ground source heat pumps in cold 

climates, where the thermal load profile of buildings is 

not balanced between heating and cooling, especially 
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in residential sector characterized by low internal 

loads. A hybrid ground source heat pump system to 

extract heat from ground and the appropriate 

simulation model was developed considering the 

dynamic performance of heat pump and the heat 

transfer of heat pipes and surrounded soil is proposed 

in the work [12]. The large imbalances between 

cooling and heating loads cause a rise or decline in 

ground temperature because of thermal interference 

between multiple ground heat exchangers (GHEs). 

The annual changes caused by the thermal interference 

in ground was presented in the paper [13]. The [14] 

paper focuses on combining a ground source heat 

pump system with a solar thermal array, for 

eliminating the effect of ground thermal imbalance. 

The heat compensation unit with thermosyphon has 

been described in [15] to eliminate the annual soil 

thermal imbalance of ground-coupled heat pump in 

heating-dominant buildings. The objective of the [16] 

study is to investigate the influence of the cooling 

performance for a water-to-water ground source heat 

pump (GSHP) by using the counter flow and parallel 

flow methods. A novel heating and power co-

generation system coupling biomass partial 

gasification and ground source heat pump is proposed 

and analyzed in the [17] study. The proposed in [17] 

system consists of four subsystems: biomass partial 

gasification subsystem; gas turbine power generation 

subsystem; steam turbine power generation 

subsystems; and ground source heat pump subsystem. 

The exergetic and exergoeconomic performance 

analysis of proposed system are investigated in [18]. 

The paper [19] presents an experimental investigation 

and control optimization of a ground source heat pump 

(GSHP) system. The work [20] presents long-term 

operation of a ground-source heat pump (GSHP) under 

a load imbalance condition with can lead to thermal 

buildup or depletion. One of the many problems 

present in such constructions of the ground heat 

exchangers is the choice of the operational parameters 

of the lower heat source and the selection of a ground 

regeneration systems which would enable effective 

regeneration in a short period of time and at a minimal 

cost. Regeneration process can reduce of the 

imbalance and the ground thermal depletion. The next 

chapter presents a theoretical model and calculations 

for the exploitational conditions for the ground with 

horizontally heat exchangers. 

2. ASSUMPTIONS FOR THE THERMAL 

GROUND ANALYSIS AND THE 

MATHEMATICAL MODEL 

For the calculations it was assumed that the heat 

energy is obtained through the horizontal collector of 

a ground-coupled heat exchanger with ethyl alcohol or 

propylene glycol as the operating medium, in a closed 

circuit. This variant also included the phenomenon of 

the gradual depreciation of the gradient of the ground 

temperature, which causes a permanent decrease in the 

ground's energy efficiency. To minimize the effect of 

the gradual cooling of the ground, it is necessary to 

properly balance the energy model. For this purpose, 

one must take into account the ground's regeneration 

time to protect its energy resources. We assume that 

the regeneration of the lower source takes place in the 

summer period through direct heating with solar 

energy and ground water flowing directly in the 

vicinity of the horizontal heat exchanger. Possible 

variants of lower source regeneration systems include 

solar systems, waste heat from AC systems and other 

high-energy sources. 

 

Fig. 1. Geometric layout of the ground-coupled exchanger and the calculation points for the ground's heat dynamics 
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The input data for the ground analysis: 

 geometric layout of pipes in the ground-coupled 

exchanger is shown on Fig. 1, 

 submersion of horizontal lower heat source 

pipelines 1.2-1.4 m, 

 design external temperature in winter  

Twinter= -251.15 K, 

 scope of operating temperatures of the lower heat 

source T=278.15-288.15 K, 

 fine-grained sands are present at the depth of 

0-5 m, 

 pipe diameter =0.04 m, 

 the calculations were performed for a medium 

medium-moist sand =0.4 W/m/K (PN-EN ISO 

6946). 

Table 1 shows the heat properties of the ground 

used in the calculations. 

Tab. 1. Ground heat properties used in the calculations 

Parameter name Quantity Unit 

specific heat of the ground 

(sand) 
840 J/kg/K  

density of the ground (sand) 1600 kg/m3 

heat capacity of the ground 

(sand) 
1.34 MJ/m3/K 

specific heat of the water 190 J/kg/K 

water density 1000 kg/m3 

heat capacity of water 4.19 MJ/m3/K 

heat capacity of wet ground 

(1/3 water + 2/3 sand) 
2.29 MJ/m3/K 

 

The following basic thermal conduction dynamics 

equation was used for the calculation of the change in 

ground temperature:  

 Tk
t

T
Cp 




  ,            (1) 

where: 

 - density [kg/m3], 

pC - specific heat [J/kg/K], 

T - ground temperature [K], 

k - heat transfer coefficient [W/m2/K], 

t - time [s]. 

The boundary condition for the lower heat source 

was defined by the equation: 

   bextb TThTk n  ,           (2) 

where: 

h - heat transfer coefficient of the external fluid film 

[W/m/K], 

k - heat transfer coefficient [W/m2/K], 

bT  - boundary temperature [K], 

extT  - temperature of the external fluid [K], 

n - normal vector to the heat transfer surface. 

This equation assumes the open boundary 

conditions for the ground.  

Two characteristic points were used to verify the 

calculations: 

 first point at the depth of 1 m, located centrally 

over the pipe,  

 second point at the depth of 1.5 m, located 

between two pipes of the ground-coupled heat 

exchanger. 

3. RESULTS OF THE HORIZONTAL 

GROUND-COUPLED HEAT 

EXCHANGER CALCULATIONS. 

This chapter presents the results of the lower heat 

source calculations related to the cooling and 

regeneration of ground. The initial calculation values 

are presented in Table 2.  

Tab. 2. Initial values for the heat calculations regarding 

ground cooling and regeneration 

Ground cooling 

Initial temperature Tstart=288.15 K 

Ambient temperature Tot=251.15 K 

Temperature of the ground-

coupled heat exchanger 
Tgr=278.15 K 

Ground regeneration 

Initial temperature Tstart=265.15 K 

Ambient temperature Tot=298.15 K 

Temperature of the ground-
coupled heat exchanger 

Tgr=300.15 K 

 

Figure 2 shows the calculations of the dynamic 

temperature change for the two characteristic points 

located at different depths. Fig. 2a shows the process 

of ground cooling based on the assumption that the 

lower heat source operates continuously. Fig. 2b 

shows the process of ground heating based on the 

assumption that the upper heat source operates 

continuously. Fig. 3 shows the distribution of the 

temperature contours for the time t=1e5 s and t=1e7 s 

during ground cooling. Figure 4 shows the distribution 

of the temperature contours for the time t=1e5 s and 

t=1e7 s during ground regeneration. 

The distribution visible on fig. 3 and 4 clearly 

shows how the temperature front moves in the ground 

due to the operation of the ground-coupled exchanger 

during ground cooling and heating.  

Ground temperature 273,15 K at the depth of 1 

metre will be reached after 1.75e6 (20 days) in the 

case of the continuous operation of the lower heat 

source (24 h/day) with an ambient temperature of 251 

K and the lower heat source temperature at the level of 

278,15 K (Table 1).  
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a) 

 

b) 

 
Fig. 2. Temperature changes in time for the depth 1 m (blue) and 1.5 m (green) during ground cooling (a) and regeneration (b) 

At the depth of 1.5 m, the freezing point 273,15 K 

is reached after 2.05e7 (237 days) of constant 

operation. In the case of the use of a regeneration 

system, in summer the operational parameters of the 

ground should be restored to 283 K after approx. 15 

days of the system's constant operation. 

4. CONCLUSIONS 

The presented calculation results allow us to 

estimate the ground's thermal states based on lowered 

ambient temperature and the possible use of a lower 

heat pump source regeneration process. 

The model does not include the influence of 

watercourses in the ground (unfavorable variant) on 

the heat conduction processes. It was assumed that 

there are no watercourses in the ground and no phase 

transition water crystallization process takes place. As 

a result, in the ground cooling process below 273,15 K 

temperature can be reached in a longer time due to 

moisture diffusion in the ground as well as the change 

of water from the liquid phase to the crystalline phase, 

which is related to the heat of the freezing phase 

transition and the time of this transition, which is 

dependent on the moisture content of the ground. 
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a) 

 
b) 

 
Fig. 3. Temperature distribution for ground cooling for the time: a) t=1e5 s; b) t=1e7 s 

However, assuming the predicted operation period 

of 40-50 years, in the case of extremely low ambient 

temperatures in winter and excessive moisture 

penetration, the ground-coupled heat exchanger may 

experience local freezing with the formation of ice 

wreaths which with time can form a type of ice "plate" 

within the ground structure. At the depth of 1.5 m, the 

freezing point 273,15 K is reached after 237 days of 

constant operation. For horizontal ground-coupled 

exchangers this is a negative phenomenon, which is 

why one of the recommended solutions in such cases 

is the use of regeneration systems. In the case of the 

use of a regeneration system, in summer the 

operational parameters of the ground should be 

restored to 283,15 K after approx. 15 days.  

Fig. 4. Nomenclature 

Cp - specific  heat 

h - heat transfer coefficient  

k - thermal conductivity 

T - temperature 

 t - time 

ρ
 

- density 
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a) 

 

b) 

 
Fig. 5. Temperature distribution for ground regeneration for the time t=10e5 s (a) and t=1e7 s (b) 
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