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Abstract: The article presents the problem of reactive power compensation in an electric 

network, which powers a charging station for electric vehicles. The reactive power is present 

because the converters have a reactance character. Mobile inverters are single-phase receivers, so 

they cause a lack of symmetry in a three-phase system. Lack of symmetry causes an unbalance 

component to appear. The power compensation discussed here results in an improvement in the 

power factor. The reduction of the reactive and unbalance power is the result of this 

compensation. The article takes into account a non-sinusoidal method of power supply. 

Keywords: power compensation, reactive power, three-phase circuits, unbalanced system, 
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1. INTRODUCTION 

Electric vehicle charging stations use several 

standards of plugs and voltages. AC and DC systems 

can be found here.  

 

Fig. 1. Fast 150 kW charging station for an electric vehicle 

[17] 

There are several dozen models of Electric Vehicle 

(EV) already available on the market. Different 

models have different types of charging plugs. Most 

plug-in standards on the markets use alternating 

current (AC) because this is easily available in every 

household. The use of alternating current has forced 

car manufacturers to use internal chargers that convert 

AC to DC current. 

 

Fig. 2. CHAdeMO socket (on the left) next to the Type 1 

socket (on the right) [18] 

The CHAdeMO standard allows for the delivery 

of direct current up to 62.5 kilowatts (500 volts, 125 

amps). The CHAdeMO standard is designated IEC 

62196 Type 4, but it is rarely called Type 4. 

Type 2 is marked with IEC 62196 Type 2 code 

and allows charging with both current AC and DC. 

 

Fig. 3. Type 2 / Mennekes Standard (AC / DC) [18] 
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Combined Charging System (CCS) Combo 2 is an 

extension of the Type 2 standard with two large DC 

charging pins. The pins responsible for the supply of 

alternating current have disappeared from the Type 2 

plug. 

 

Fig. 4. Type 2 plug (on the left) next to the plug (right) 

Type 2 CCS / Type 2 combo / Combo 2 [18] 

Type 1 (Fig. 2) allows charging with capacities up 

to 19.2 kW. This plug only supplies alternating current 

(AC), one or two phases. 

Type 1 combo is an extension of the Type 1 plug 

with two thick pins for DC charging. 

 

Fig. 5. Type 1 combo / Combo1 / CCS combo 1 / Type 1 

CCS (DC) [18] 

There are many other plug-in standards that are 

dedicated to selected car models. The examples of 

standards presented here show that charging stations 

for electric vehicles operate asymmetrically. 

 

Fig. 6. Block diagram of the voltage converter 

The generation of direct current from the three-

phase alternating current supplying the station takes 

place in three-phase rectifiers. This means an even 

load on all the phases. The use of a single-phase AC 

charging socket results in an uneven distribution of 

currents in the supply network phases (Fig. 7). 

 

 

 

 

 

 

 

 

 
Fig. 7. Connection of AC and DC outlets in the charging 

station   

The compensator used in the charging station must 

take into account the unbalance, reactance nature and 

nonlinearity of the receiver. The receiver's nonlinearity 

effect can be reduced by using a filter tuned to the 

appropriate harmonic. In the further part of this work, 

the nonlinearity problem was omitted.  

In the further part of the work, the least favorable 

situation was assumed, in which only one phase is 

burdened. 

2. AMBIGUITY IN THE 

INTERPRETATION OF APPARENT 

AND REACTIVE POWER 

Determining the compensator parameters is an 

issue that requires understanding the energy properties 

of the electrical system. The method of describing the 

power in the system is a key issue in this problem.  

Active power for the passive system has been 

precisely described by the active component of the 

current according to the Fryze's theory [2]. The 

definition of apparent power in three-phase circuits is 

not unambiguous. 

In 1922 F.Bucholz proposed the definition of 

apparent power for a three-phase source with 

sinusoidal waveforms: 
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The apparent power presented in this form has not 

been accepted in technology but, in special cases it is 

still used today. Apparent power presented in 1935 by 

H.L. Curtis and F.B. Silsbee known as arithmetic 

apparent power became more widespread: 
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The third definition of this power is the form often 

used, known as geometrical apparent power: 
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Definitions (1), (2) and (3) give the same results 

only if: there is symmetry of the power source, the 

three-phase receiver is balanced, the current and 

voltage have the first harmonic only. When even one 

of these conditions is not met, the results obtained 

from these equations are contradictory. 

Correct implementation of power compensation, 

and determination of energy properties of three-phase 

circuits is therefore related to the accepted definition 

of apparent power. Building power theory on several 

foundations of apparent power causes that fact that the 

obtained results may be contradictory even in the 

situation of sinusoidal waveforms. Assuming the 

power equation, analogously to single-phase, linear, 

sinusoidal systems, it should be stated that only the 

geometric apparent power definition (3) is correct in 

this case. 

The power factor is closely related to the 

efficiency in the energy system. The reduction of the 

power factor is caused by an increase of transmission 

losses. Considering this, Czarnecki proposes to choose 

the definition of apparent power, paying particular 

attention to the assessment of these losses. After 

analyzing the unbalanced circuit, he stated that only 

the apparent power calculated according to Equation 

(1) gives a correct value of the power factor. This 

definition is an extension of the definitions iuS ⋅=  

for single-phase circuits. 

In the literature, the definition of reactive power is 

also unambiguous. However, looking at this power as 

a parameter directly affecting the selection of the 

compensator, one must accept the definition of this 

power in accordance with the CPC (Currents' Physical 

Components) theory. 

3. DECOMPOSITION OF CURRENT INTO 

COMPONENTS 

The method of decomposition of current into 

components according to the CPC theory [1] gives the 

best view on ways of decreasing the effective value of 

current. Knowledge of the properties of individual 

components of the current makes an analysis of the 

circuit in terms of the possibility of reactive power 

compensation easier. 

Assuming the definitions of three-phase current 

and voltage vectors in the case of periodic runs for the 

n-th harmonic, it is possible to extend the sum of the 

harmonics of voltages and currents: 

 

( ) ( )
tjn

n
n

n

n ee 12
ω⋅ℜ⋅== ∑∑ Uuu , (1) 

 

( )

( )

( )

( )
















=

n

n

n

n

u

u

u

C

B

A

u , (2) 

( ) ( )
tjn

n
n

n

n ee 12
ω⋅ℜ⋅== ∑∑ Iii , (3) 

 

( )

( )

( )

( )
















=

n

n

n

n

i

i

i

C

B

A

i , (4) 

 

where the relevant complex vectors take the following 

form: 
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The effective electric energy of the n-th harmonic 

transmitted from the source to the three-phase receiver 

will be equal to the sum of energy for each phase 

separately. 
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If the active power flowing for each harmonic is 

unidirectional, the resultant total active power is equal 

to: 
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(11) 

The active power of a three-phase system is connected 

with the equivalent admittance, defined for the n-th 

harmonic:  
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(12) 

The unbalance of a three-phase system translates into 

a non-zero value of unbalance admittance. For 

harmonics, where the voltages are in correct sequence, 

the unbalance admittance equals to: 
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where α - a complex rotation coefficient that is equal 

to: 3
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For these harmonics, the voltage vector (5) taking into 

account the rotation coefficient α is equal to: 
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Therefore, when the voltages are in a correct sequence 

for the n-th harmonic (n = 3k + 1), a current-voltage 

relationship occurs: 
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For harmonics where the voltages are in an 

incorrect sequence (n = 3k + 2), the following 

definitions will change: 
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In order to present the formulas for all the 

harmonics in the correct and incorrect sequence, 

according to [1], the β complex rotation coefficient 

was introduced: 
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Using the β coefficient, it is possible to show 

unbalance admittation and a current-voltage equation, 

regardless of the phase sequence of harmonics 

(disregarding the harmonics of the zero sequence): 

 

( ) ( ) ( ) ( )( )
nnnn

YYYA
AB

*
CABC

ββ ++−= , (13) 

 

( )

( ) ( )

( ) ( )

( ) ( )

( )n

nn

nn

nn

n

AY

AY

AY

UI ⋅
















⋅+

⋅+

+

=

β

β

e

*
e

e

. (14) 

 

Dependence (14) can be represented by a matrix 

equation of the form:  
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where b is a rotation matrix equal to: 
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Using the Rotation Matrix (16), Equations (7) and (11) 

change to the form: 
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Thus, by substituting (17) to Equation (15), the 

following is obtained: 

 

( ) ( ) ( ) ( ) ( )
#

e nnnnn
AY UUI ⋅+⋅= . (18) 

 

This means that for instantaneous values, the Current 

Vector (3) in the power line will be equal to: 
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This vector can be separated into the sum of several 

components that interpret different physical 

phenomena: 
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the reactive component: 
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the unbalance component: 
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and the active component of the current, which is 

consistent with the Fryze's theory, is: 
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From the ic component, it is possible to isolate the is 
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Thus, the Current Vector (19) can be decomposed into 

components: 

 

ursa iiiii +++= . (25) 

 

The effective values of the individual vector 

components are equal to: 
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The ia active vector component of the current in 

accordance with the Fryze's theory depends on the 

active power of the receiver. 

The is scattering vector component appears when 

the Ge(n) equivalent conductivity of the receiver varies 

together with harmonics. 

The ir reactive vector component appears when 

there is a non-zero phase shift between the current 

vectors i(n) and the voltage u(n) for any harmonic in any 

phase. The condition for the existence of this shift is a 

non-zero equivalent susceptance Be(n) ≠ 0.   

The iu unbalance vector component appears in the 

case when the unbalance admittance A(n) ≠ 0. 

The decomposition of the Current Vector (25) can 

be represented graphically as a parallel connection of 

several receivers interpreting different physical 

properties. 

The presented graphical interpretation of three-

phase current decomposition (Fig. 8) is a form that 

replaces a linear, stationary, unbalanced three-phase 

receiver for any n harmonic. 

The components: ia (active current), is (scatter), ir 

(reactive) have the same sequence of harmonics as the 

supply voltage u, while the unbalance iu has the 

opposite sequence. For this reason, only the iu 

unbalance current affects asymmetry of i currents. 

Individual components are orthogonal, therefore 

they fulfill the following equation: 
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The double-sided multiplication of this equation by the 

square of the effective value of the voltage vector 
2

u  

gives the power equation: 
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where the individual components are: 

− apparent power iu ⋅=S , [VA], 

− active power aiu ⋅=P , [W], 

− reactive power  riu ⋅±=Q , [VAr],  

− unbalance power uu iu ⋅=D , [VA], 

− scattering power ss iu ⋅=D , [VA]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8. Graphical interpretation of the decomposition of three-phase AC components 
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The powers presented here do not have any 

physical interpretations. They are the result of 

multiplying the effective values of the physical 

components of the current with the voltage. Even the 

P active power does not have its physical 

interpretation, because in these analyzes it cannot take 

any negative values. This is only valid for passive 

receivers. For active receivers, one should pay 

attention to the sign, which depends on the current 

direction. 

4. THE POWER COMPENSATION FOR 

HARMONIC WAVEFORMS FOR 

THREE PHASE CURRENT PHYSICAL 

COMPONENTS 

In the case of three-phase three-wire circuits, with 

a balanced source supplying a balanced receiver, 

power compensation can be analyzed analogously to 

single-phase circuits, considered individually for each 

phase.  

In a three-phase system, the sequence of 

harmonics must be controlled. The zero sequence (i.e. 

for n = 3k + 3) must be excluded from the analysis, as 

the CPC method does not provide for internal flows 

between phases for one frequency. When the source is 

symmetrical and the receiver is balanced, the 

appearance of these harmonics in the supply current is 

excluded, so the harmonics of the zero sequence need 

not be taken into account in the design process of the 

compensator. 

The power factor is a parameter describing the 

efficiency of the entire current path, i.e. from the 

generation of energy, its transmission to use in the 

receiver. When decomposing the current using the 

CPC method, the power factor is equal to: 
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This coefficient is lowered not only by the ir 

reactive component, but also by the components of the 

is scattering and iu unbalance. 

The concept of power compensation using 

physical components of currents, in fact, is based on 

the determination of surrogate parameters of a three-

phase receiver – equivalent susceptance Be(n) and 

unbalance admittance A(n) for subsequent harmonic 

frequencies. According to (32), the power factor is 

weakened by the is scattering current, the iu unbalance 

current and the ir reactive current. 

The reduction of ir reactive component in a three-

phase system can be considered individually for each 

phase separately. The is scattering current of the three-

phase load cannot be compensated by a parallel 

reactance compensator. The method of compensation 

for this component is analogous to that for one phase. 

By adding a parallel compensator (Fig. 9), it is not 

possible to reduce the is component, so in this case the 

maximum power factor value according to Formulas 

(24) and (32) is: 
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Fig. 9. A parallel compensator in a three-phase system for 

the nth harmonic 

The iu unbalance current is compensated by 

decreasing the value of unbalance admittation. 

Formula (29) means that the receiver must be balanced 

for each harmonic separately. 

The ir(n) reactive component is reduced when the 

imaginary part of the sum of the Ye(n) equivalent 

admittance and the compensator Yk(n) is zeroed: 
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When the Unbalance Admittation (13) equals zero, the 

unbalance component iu(n) is reduced:  
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The solution of Equations (34) and (35), taking 

into account the sequence of harmonics is the 

following dependence: 
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The compensator, whose susceptance is deter-

mined from Dependence (36), resets the ir(n) reactive 

current and iu(n) unbalance for the nth harmonic. 

Example 

A single-phase receiver with ( )Ω+=  11
A

jZ  

impedance is connected to a three-phase network.  

u(n) ic(n) 

A 

B 

C 

ic(n)+ ir(n)+ iu(n) 

 

-ir(n) -iu(n) 

Bk AB(n) 

Bk CA(n) 

Bk BC(n) 

Ye(n) 

A(n) 
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Fig. 10. Compensation of an unbalanced receiver 

 The circuit was powered by a lossless 1:1 

transformer with a sinusoidal three-phase voltage with 

an effective value of U = 230 V. The phase current 

flowing in one phase is equal to:   
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The equivalent admittance of the receiver accepts the 

following value:  

 

ABCABCAB YYYYjBGY eee
=++=+= , 

 

while the unbalance admittance is as follows:  
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The effective value of the voltage vector is:  
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The effective values of currents, expressed by active, 

reactive and unbalanced components, are respectively: 
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The total current is the sum of orthogonal components, 

thus: 
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The power factor of a three-phase receiver before 

compensation is: 
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The compensator susceptance values from (36) are as 

follows: 
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Positive susceptance values are realizable in a system 

with a capacitor, while a negative value is a system 

with inductance. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11. Implementation of a compensator for this example 

The applied compensator resets the reactive and 

unbalance components of current: 

 

A 199a =i ,  

A 0r =i ,  

A 0u =i . 

 

The effective value of the three-phase current has been 

reduced to: A 199=i . As a result of reactive power 

compensation and system balance, the power factor 

has been improved to λ=1. The effective values of the 

currents in the supply line in all phases are equal to:  
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5. THE ADAPTIVE POWER 

COMPENSATION 

Susceptances Bk of the compensator (36) are the 

functions of: the Be equivalent susceptance of the 

receiver, the A unbalance admittance and the s 

sequence of the harmonics. Therefore, after changing 

the parameters of the receiver, new settings of the 

compensator must be determined.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 12. Three-phase system with adaptive power 

compensation 

 The adaptive compensation (Fig. 12) will be 

based on the automatic determination of the 

compensator parameters depending on the 

instantaneous energy specifications of the receiver. 

The system for adaptive power compensation is 

equipped with microprocessor systems (µP): 

measurement, identification and control, whose main 

idea of operation is the real-time determination of the 

compensator parameters based on the Dependence 

(36). The algorithm of this system assumes the 

realizability of the compensator for the border 

parameters of the receiver power changes. SAB, SBC, 

SCA apparent powers of the individual phases of the 

receiver are values defined in a certain area of 

allowable power variations, around the mean value 

S0 = P0 + jQ0, which for all phases has the same value 

(Fig. 13). The area with the radius kS0 is adopted to 

cover the apparent powers of all phases. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 13. The dispersion of the active and reactive power of 

the receiver for the AB phase 

 In the case of a receiver with a triangular topology 

with YAB, YBC, YCA admittance, the complex power of 

one of the phases is equal to: 
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i.e. the admittance of one phase is equal to: 
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The projection of the S0 reference vector (Fig. 13) 

is the SAB vector shifted by a kAB vector whose 

complex value is: 
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where the kAB coefficient is a positive value equal to or 

less than k. Complex power in the AB phase can 

therefore be expressed as the sum of: 
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From Dependencies (38) and (40), it follows that 

admittance in this phase is: 
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The dispersion of the YAB admittance is possible 

within the accepted area, i.e. the borderline case is 

kAB = k. The boundary parameters of the receiver, i.e. 

the equivalent susceptance and the unbalance 

admittance, determined from Dependencies (12) and 

(13) are respectively: 
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The susceptances of this compensator are determined 

from (36), (42) and (43) for each harmonic separately. 

The imaginary part of unbalance admittance for the 

correct and incorrect sequence of harmonics is: 
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(44) 

where the s coefficient depends on the harmonic 

sequence and has been specified in Formula (12). 
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Due to the fact that none of the phases of the 

compensator is dominant, the limits of the 

compensator's susceptance for one of the phases must 

be calculated. The BC branch is the simplest 

mathematical form in Equality (36). 
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The susceptances of this compensator can take 

positive and negative values, so the adaptive 

compensator topology must anticipate both situations. 

Physical implementation of such a compensator is 

possible in the arrangement of mechanical or 

electronic switches. Changing the reactive current of 

the coil is most often carried out by the serial 

connection of the T triac (Fig. 14). 

 

 

 

 

 

 
Fig. 14. Implementation of one phase of the adaptive 

compensator 

 The change of the susceptance of one phase of the 

compensator takes place by changing the ignition 

angle of the triac T. A positive susceptance value is 

available through the use of a capacitor C. The 

susceptance of one phase for such implementation is: 
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where α - firing angle of the triac. 

Depending on the triac ignition angle, the 

minimum and maximum values of this susceptance 

are: 
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(47) 

 

The compensator with the adopted topology 

(Fig. 14) can generate additional current harmonics. 

They depend on the firing angle of the triac, with the 

third order being the largest of them. However, in the 

three-phase connection of the symmetrical 

compensator, the third harmonic current flows inside 

the compensator branch, without causing distortion of 

the compensating current. There may appear smaller 

contents of the odd order harmonics with the correct 

and incorrect sequence. 

In the case of unbalanced operation of this 

compensator, the third harmonic causes a strong 

distortion of the current. This can be further 

compounded by the resonance between the 

compensator's capacity and the resultant induction of 

the source. For this reason, a compensator with such 

a topology cannot be used as a balancing compensator. 

The system built according to [7] is devoid of this 

disadvantage: 

 

 

 

 

 

 

 
Fig. 15. Implementation of one phase of the adaptive 

compensator with the third harmonic filter 

 The modified compensator topology (Fig. 15) has 

been extended with a LfCf resonance filter whose 

resonant frequency is equal to the third harmonic. The 

additional Lc inductance helps to maintain the 

inductive character for harmonic frequencies. The 

individual parameters of the elements from Fig. 14 and 

Fig. 15 are determined from the equations for the 

minimum and maximum susceptance and from the 

resonant frequency of the filter. 

6. CONCLUSIONS 

A circuit constructed in accordance with Fig. 14 

may cause a current deformation of 50%, whereas the 

modified circuit of Fig. 15 is characterized by 

a deformation of the order of 0.8%. The analysis 

presented concerns an adaptive compensator operating 

without feedback. It is also possible for such 

a compensator to work in a feedback system. In this 

case, measurements of currents and voltages (Fig. 12) 

should be made not on the receiver but on a three-

phase source. The algorithm of such a compensator 

will control the trigger angle of the triac so that the 

measured current has a minimized reactive and 

unbalance component. The system working with 

feedback makes it necessary to check the stability of 

the work by a compensator algorithm. 

Nomenclature 

Symbols 

A – complex number of unbalance admittance, S 

α – firing angle of the triac, ° 

α – complex rotation coefficient 

β – complex rotation coefficient with the order of 

harmonics 

Be(n) – equivalent susceptance of the receiver for the nth 

harmonic, S 

Bk – susceptance of compensator, S 

L 

C 

T 

L 

Cf 

T 

Lf 

Lc 
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b – rotation matrix 

C – capacitance, F 

Ds – scattering power, VA 

Du – unbalance power, VA 

Ge(n) – equivalent conductance of the receiver for the nth 

harmonic, S 

IA – effective value of the current in phase A, A 

iA(n) – instantaneous current value on phase A for the nth 

harmonic, A 

i – vector of the current, A 

ia – active vector component of the current, A 

is – scatter vector component of the current, A 

ir – reactive vector component of the current, A 

iu – unbalance vector component of the current, A 

L – inductance, H 

λ – power factor, W/VA 

n – harmonic number 

P – active power, W 

Q – reactive power, VAr 

s – coefficient of harmonic sequence 

S – apparent power, VA 

T – period of the function, s 

UA – effective value of the voltage in phase A, V 

u  – resultant rms voltage for all harmonics, V 

ω1 – basic pulsation, rad/s 

YAB – receiver admittance between phases A and B, S 

Ye(n) – equivalent admittance of the receiver for the nth 

harmonic, S 

Acronyms 

AC – Alternating Current 

CCS – Combined Charging System 

CPC – Currents' Physical Components 

DC – Direct Current  

EV – Electric Vehicle 

µP – Microprocessor Systems 
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