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Abstract: In the paper, characteristics of porous coatings enriched in copper on pure Titanium 
and its alloys (NiTi, Ti6Al4V, TNZ, Ti2448) as well as on niobium obtained by Plasma 
Electrolytic Oxidation (PEO) in electrolyte containing H3PO4 within Cu(NO3)2, are presented. All 
obtained surfaces of PEO coatings have different shapes and diameters of pores. The binding 
energies of main peaks for titanium Ti2p3/2, niobium Nb3d5/2, zirconium Zr3d5/2, phosphorus 
(P2p) and oxygen (O1s) suggest the presence of titanium Ti4+, niobium Nb5+ and zirconium Zrx+ 
(x≤2) as well as PO4

3–.  
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1. INTRODUCTION 

To prepare the porous surfaces for automotive and 
industrial catalysts as well as for metallic biomaterials 
it is necessary to use electrochemical methods. Bright, 
smooth and pore-free surfaces in nanometric scale are 
received after standard electropolishing [1-6], 
magnetoelectropolishing [6-27], high-current density 
electropolishing [28-30], whereas for obtaining micro-
layers the Plasma Electrolytic Oxidation known also 
as Micro Arc Oxidation [31-53], may be used. 

2. MATERIALS AND METHODS 

The plasma electrolytic oxidation (PEO) was 
performed at the average voltage of 450±46 V with 
pulsation at frequency of 300 Hz as well as at 450VDC 
without any pulsation. The main elements of the set-up 
are: processing cell, DC power supply, the electrodes 
and connecting wiring. For the studies, the electrolyte 
composed of orthophosphoric acid H3PO4, with an 
addition of copper II nitrate, was used. For each run, 

the electrolytic cell made of glass was used, containing 
up to 500 ml of the electrolyte.  

The scanning electron microscope Quanta 250 FEI 
with Low Vacuum and ESEM mode and a field 
emission cathode as well as the energy dispersive 
EDX system in a Noran System Six with nitrogen-free 
silicon drift detector, were employed. The 
magnifications of 500 and 6000 times for SEM images 
were used. The EDS analyses were performed from 
the whole frame for magnification of 500 times. 

The X-ray photoelectron spectroscopy (XPS) 
measurements on titanium samples were performed 
employing SCIENCE SES 2002 instrument using 
a monochromatic (Gammadata-Scienta) Al K(alpha) 
(hν = 1486.6 eV) X-ray source (18.7 mA, 13.02 kV). 
Scans analyses were carried out with an analysis area 
of 1 mm × 3 mm and a pass energy of 500 eV with the 
energy step 0.2 eV and step time 200 ms. The binding 
energy of the spectrometer has been calibrated by the 
position of the Fermi level on a clean metallic sample. 
The power supplies were stable and of high accuracy. 
The experiments were carried out in an ultra-high-
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vacuum system with a base pressure of about 
6·10−8 Pa. The XPS spectra were recorded in normal 
emission. For the XPS analyses the CasaXPS 2.3.14 
software (Shirley background type) [23] with the help 
of XPS tables [24-25] was used. All the binding 
energy values presented in that paper were charge 
corrected to C1s at 284.8 eV.  

3. RESULTS AND DISCUSSION 

In Figures 1 and 2 the SEM images of Titanium 
after PEO treatment at 450 V for 3 minutes in the 
electrolytes consisting of 300 g and 600 g of copper 
nitrate Cu(NO3)2 in 1000 mL of orthophosphoric acid 
H3PO4 are presented. The surfaces formed during PEO 
process are porous, however the shapes and diameters 
of pores are different for the two studied electrolytes.  

 

Fig. 1. SEM image of Titanium after PEO treatment at 
450±46 V with pulsation at frequency of 300 Hz for 
3 minutes in the electrolyte consisting of 300 g 
Cu(NO3)2 in 1000 mL H3PO4 [50] 

 

Fig. 2. SEM image of Titanium after PEO treatment at 
450±46 V with pulsation at frequency of 300 Hz for 
3 minutes in the electrolyte consisting of 600 g 
Cu(NO3)2 in 1000 mL H3PO4 [50] 

Figure 3 shows the XPS spectra with binding 
energies of peaks of Titanium (Ti2p), phosphorus 
(P2p), carbon (C1s), oxygen (O1s), copper (Cu2p) and 
nitrogen (N1s). Based on these spectra, it is possible to 
state that in studied top 10 nanometers of PEO 

coatings, the titanium (Ti4+), copper (Cu+ & Cu2+), 
phosphorus and oxygen (PO4

3–) were found. The 
signals of carbon and nitrogen with some oxygen may 
be interpreted as contamination nano-layer. It was 
found that the copper to phosphorus (Cu/P) ratios of 
surfaces obtained during PEO treatment in electrolytes 
containing 300 g and 600 g Cu(NO3)2 were equal to 
0.12 by atomic concentration, respectively. More 
details regarding these surfaces may be found under 
the Authors’ reference [50]. 

 

Fig. 3. XPS results of coating formed on Titanium after 
PEO treatment at voltage of 450±46 V with 
pulsation at frequency of 300 Hz in the electrolyte 
consisting of 600 g Cu(NO3)2 in 1000 mL H3PO4 

Figure 4 shows the XPS spectra with binding 
energies of peaks of titanium (Ti2p), niobium (Nb3d), 
zirconium (Zr3d), phosphorus (P2p), carbon (C1s), 
oxygen (O1s), copper (Cu2p) and nitrogen (N1s) of 
porous Titanium-Zirconium-Niobium (TNZ) alloy 
surface (Fig. 5) after PEO treatment at 450 V for 3 
minutes in the electrolyte consisting of 300 g and 
600 g of copper nitrate Cu(NO3)2 in 1000 mL of 
orthophosphoric acid H3PO4. Based on these spectra, it 
is possible to state that in studied top 10 nanometers of 
PEO coatings, the titanium (Ti4+), niobium (Nb5+), 
zirconium (Zrx+, where: x≤2), copper (Cu+ & Cu2+), 
phosphorus and oxygen (PO4

3–) were found. The 
signals of carbon and nitrogen with some oxygen may 
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be interpreted as contamination nano-layer. It was 
found that the copper to phosphorus (Cu/P) ratio of 
surface obtained during PEO treatment in electrolytes 
containing 600 g Cu(NO3)2 were equal to 0.13 (by 
atomic concentration).  

 

Fig. 4. High resolution XPS spectra/results of coating 
formed on Ti-Nb-Zr alloy after 3 minutes of PEO 
treatment at voltage of 450±46 V with pulsation at 
frequency of 300 Hz in electrolyte containing of 
H3PO4 within Cu(NO3)2 [42] 

In Figures 6-7 and 8-9 the SEM images of Nickel-
Titanium (Ni-Ti) alloy known also as Nitinol, and 
Niobium, respectively, after PEO treatment at 450 V 
for 3 minutes in the electrolytes consisting of 300 g 

and 600 g of copper nitrate Cu(NO3)2 in 1000 mL of 
orthophosphoric acid H3PO4 are presented. It has to be 
pointed that formed pores have different shapes and 
diameters. The chemical compositions of these 
surfaces were presented in Authors’ references [53]. 

 

Fig. 5. SEM picture of surface layer formed on TNZ alloy 
after the PEO treatment at voltage of 450 V the 
electrolyte consisting of 600 g Cu(NO3)2 in 1000 mL 
H3PO4 [44] 

 

Fig. 6. SEM image of NiTi alloy after PEO treatment at 
450±46 V with pulsation at frequency of 300 Hz for 
3 minutes in the electrolyte consisting of 300 g 
Cu(NO3)2 in 1000 mL H3PO4 

 

Fig. 7. SEM image of NiTi alloy after PEO treatment at 
450±46 V with pulsation at frequency of 300 Hz for 
3 minutes in the electrolyte consisting of 600 g 
Cu(NO3)2 in 1000 mL H3PO4 [50] 
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Fig. 8. SEM image of Niobium after PEO treatment at 
450±46 V with pulsation at frequency of 300 Hz for 
3 minutes in the electrolyte consisting of 300 g 
Cu(NO3)2 in 1000 mL H3PO4 [50] 

 

Fig. 9.  SEM picture of surface layer formed on Niobium 
after the PEO treatment at voltage of 450±46 V with 
pulsation at frequency of 300 Hz the electrolyte 
consisting of 600 g Cu(NO3)2 in 1000 mL H3PO4 
[44] 

In Figures 10-11, the SEM images of porous 
surface of Ti6Al4V titanium alloy after PEO treatment 
at 450 V for 3 minutes in the electrolytes consisting of 
600 g of copper nitrate Cu(NO3)2 in 1000 mL of 
orthophosphoric acid H3PO4 are presented.  

 

Fig. 10. SEM image of Ti6Al4V alloy after PEO treatment at 
450±46 V with pulsation at frequency of 300 Hz for 
3 minutes in the electrolyte consisting of 300 g 
Cu(NO3)2 in 1000 mL H3PO4 [50] 

 

Fig. 11. SEM image of Ti6Al4V alloy after PEO treatment at 
450±46 V with pulsation at frequency of 300 Hz for 
3 minutes in the electrolyte consisting of 600 g 
Cu(NO3)2 in 1000 mL H3PO4 [50] 

Figure 12 shows the XPS spectra with binding 
energies of peaks of titanium (Ti2p), aluminum 
(Al2p), vanadium (V2p), phosphorus (P2p), copper 
(Cu2p), oxygen (O1s) and carbon (C1s). Based on 
these spectra it should be noted that the surface layer 
consists mainly of titanium (Ti4+), aluminum (Al3+), 
copper (Cu+ & Cu2+), phosphorus and oxygen (PO4

3–). 
More details regarding that surface may be found 
under the Authors’ reference [41].  

 

Fig. 12. XPS results of coating formed on Ti6Al4V after 
PEO treatment at voltage of 450±46 V with 
pulsation at frequency of 300 Hz in the electrolyte 
consisting of 600 g Cu(NO3)2 in 1000 mL H3PO4 
[41] 

Figures 13 and 14 show the XPS spectra and SEM 
image, respectively, of porous surface obtained on 
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Ti2448 (Ti-Nb-Zr-Sn) titanium alloy in the electrolyte 
consisting of 600 g Cu(NO3)2 in 1000 mL H3PO4. 

 

Fig. 13. XPS results of coating formed on Ti2448 after PEO 
treatment at voltage of 450±46 V with pulsation at 
frequency of 300 Hz in the electrolyte consisting of 
600 g Cu(NO3)2 in 1000 mL H3PO4 [42] 

 The XPS spectra of titanium (Ti2p), niobium (Nb3d), 
zirconium (Zr3d), tin (Sn3d), phosphorus (P2p), 
carbon (C1s), oxygen (O1s), copper (Cu2p) and 
nitrogen (N1s) of porous Titanium-Zirconium-
Niobium (TNZ) alloy surface after PEO treatment 
have been studied. Based on these spectra, it is 
possible to state that the copper inside the PEO coating 
appears as Cu+ and Cu2+ ions whereas titanium, 
niobium and zirconium occur as Ti4+, Nb5+ and Zr4+, 
respectively. More details regarding that surface may 
be found under the Authors’ reference [42]. 

 

Fig. 14. SEM picture of coating formed on Ti2448 after PEO 
treatment at voltage of 450±46 V with pulsation at 
frequency of 300 Hz in the electrolyte consisting of 
600 g Cu(NO3)2 in 1000 mL H3PO4 [42] 

In addition, some new characteristics of PEO 
coating obtained at DC voltage of 450 V without any 
pulsation on titanium have been performed, with SEM 
image shown in Figure 15. The copper to phosphorus 
ratio is equal to 0.12 by atomic concentration, which is 
the same as was found for PEO treatment of titanium 
at voltage of 450±46 V with pulsation at frequency of 
300 Hz for 3 minutes in the electrolyte consisting of 
600 g Cu(NO3)2 in 1000 mL H3PO4. 

 

Fig. 15. SEM picture of coating formed on Titanium after 
PEO treatment at DC voltage of 450V without any 
pulsation in the electrolyte consisting of 500 g 
Cu(NO3)2 in 1000 mL H3PO4 (magnification: 
5 000×) 
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4. CONCLUSIONS 

1. Porous coatings enriched in copper on titanium 
and its alloys (NiTi, Ti6Al4V, TNZ, Ti2448) as 
well as on Niobium were obtained with using DC 
voltage of average value equal to 450 V with and 
without pulsation. 

2. The shapes of pores depend on voltage and 
electrochemically treated metal or alloy 

3. By using of DC voltage without any pulsation, the 
amount of copper nitrate in electrolyte may be 
smaller than that used for DC voltage with 
pulsation, to obtain the same amount of copper in 
coating. 
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